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FOREWORD

In my introductory remarks to the Conference on Nutrition in Space and Related Waste Prob-
lems held at the University of South Florida, Tampa, Fla., in 1964, I noted that "the support of man
in any alien environment for a long period depends on the solution of multitudinous problems, both
physical and psychological.” During the intervening years much progress has been made in the manned
space program and we have witnessed a manned lunar landing as well as other major accomplishments.
However, the nutrition problems of longer manned missions that we discussed in 1964 are, in most
instances, still with us today. The way to provide a diet that will maintain the health and well-being
of a crewmember on a long space mission while he is being subjected to the stresses of space en-
vironment is still not resolved. It is true that advances have been made since 1965, and with proper
regearch great strides will be made in the near future.

It is gratifying to note that several reports have been presented during this meeting of ad-
vances and new concepts in space feeding. One advance is the tendency toward use of natural foods
that can be eaten in a conventional manner, i.e., with a spoon or fork. If food has enough cohesive~
ness it can easily be eaten in a conventional manner under conditions of weightlessness. The avoid-
ance of unnatural or unfamiliar foods will facilitate the elimination of the psychological stress that
accompanies the use of such a diet.

Although the Panel on Space Nutrition of the Space Science Board has played only a minor
role in the organization of and participation in this conference, it has long followed with keen interest
the NASA research program in nutrition. The panel has reviewed the work underway and also looked
into special problem areas such as acceptability and palatability of diets. The panel will in the near
future reassess the current status of plans for space diets and help identify the research most likely
to solve the problems of feeding the astronaut on long space missions.

Although it was not possible for the panel to participate in the opening session, we look

forward to the publication of the papers presented at this conference.

C.0. CHICHESTER .

Chairman, Space Nutrition Panel of the
Space Science Board

National Academy of Sciences - National
Research Counetll
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WELCOME

The University of South Florida is once again honored to be the host of a Space Food
Technology Conference sponsored by the National Aeronautics and Space Administration and the
National Academy of Sciences. In the years intervening from the first conference in 1964 to the
present one in 1969, a wealth of practical space-food utilization experience has been accumulated
through the NASA Manned Space Flight Program. It is therefore fitting and appropriate to bring
the focus of the accumulated operational experience and advanced technology development to bear
on the problems of improvement of nutritional aspects for future manned space missions.

From a review of the spectrum and depth of the technical papers presented at this con-
ference, I am confident that this conference report will provide a valuable springboard for new and

unique advanced food research and technology studies.

JOHN S, ALLEN
President

University of South Florida






INTRODUCTION

There have been remarkable strides in the general field of food technology in the last several
decades. Any housewife can attest to this. It now is possible to serve a meal any day of the year,
with very little effort, which is quite nourishing and which contains many foods that may rightfully be
referred to as gourmet fare. Our better restaurants, even those in the center of our country, now
regularly offer wines from both American and French vineyards, lobsters which 24 hours earlier
were swimming in the cold waters off the coast of Maine, fruit fresh from the citrus groves of Florida,
and trout direct from the lakes of the northwest states. This bill of fare, of course, is made possible

by our excellent air transportation system.

Other areas of progress are equally noteworthy. For instance, many of our airlines are

pioneering in the development and use of airborne microwave ovens. This technique represents a

significant step forward in food preparation. Although this topic will be discussed later in the pro-
gram, [ would like at this time to compliment the airline industry and its suppliers for the advances
they have made in the rapid preparation and dispensing of large volumes of food. Imasmuch as we

in NASA are as concerned with aeronautics as with space activities, I look forward to working closely
with airline representatives as we strive for additional improvements in food preparation both in the
atmosphere and in space.

FOOD TECHNOLOGY AND THE SPACE PROGRAM

We have briefly surveyed recent progress in the development of food technology and found
it to be quite good, so let us now examine the applicability of this technology to the needs of our
gpace program. First, of course, are the requirements of the Apollo program. It appears that the
needs of this program are being adequately met. There is no evidence of any nutritional problem
and techniques for in-flight feeding seem to be successful. Freeze-dehydrated, rehydratable, and
bite-sized foods have generally been used in these missions; however, in one instance a moist food

e

which was eaten with a spoon was provided. This one attempt proved to be successful even under
zero-G conditions and was considered by the astronauts involved to be one of the highlights of the
in;ﬂight feeding program to date.

In general, astronauts have accepted the techniques now being used for in-flight feeding and
the type of food being provided. They recognized the constraints under which food must be stored
and dispensed. However, a system that is perfectly tolerable on a 2-week mission may be quite in-
tolerable on a mission lasting a number of months.

ORI W0 11 1
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In a recent test of life-support components conducted by the McDonnell-Douglas Co., four
men were kept in a closed cabin for 60 days. Although the primary purpose of this experiment was
to test closed-loop oxygen and water systems, the experiment also afforded insight into the palat-
ability of astronaut-type food over an extended period. It was found, as one would predict, that the
quality as well as the appearance of food becomes increasingly important as time passes. A periodic
change in type of food had a noticeably positive effect on the morale of the subjects.

As a final comment on the state of the art in our space-food program, I would like to quote
directly from the closing remarks of the chairmen, Dr. C.O. Chichester, at a 1964 conference here
at the University of South Florida: "At the moment it appears we have no clear-cut idea of how we
are going to feed people for long space flights. As the flights become longer provision will have to
be made; many methods have been suggested for solving the problem and thus we have a multiple
pathway of investigation. The consensus seems to be that these methods must be investigated in a
parallel fashion since we do not have the criteria nor do we have the knowledge at the present time
to make any choice." I recognize that progress has been made since 1964, but I do feel that these

remarks in some measure remain appropriate today.
RESEARCH REQUIREMENTS IN AN ADVANCED FOOD TECHNOLOGY PROGRAM

In NASA we use the term ''pacing technology'' to denote a technological area which repre-
sents a limiting factor in the progress of a particular program. In the early days of NASA, booster
power was a pacing technology. On October 4, 1957, the Russians orbited Sputnik I with a payload
of 184 Ib. By 1958 they were able to place into orbit a payload of 2926 Ib. The United States, on
the other hand, placed an initial payload of 31 Ib into orbit on January 31, 1958. It was quickly
determined that, in our attempts to match or to exceed Russian progress in the exploration of space,
booster power was a pacing technology. This situation prevailed until November 9, 1967, when the
first Saturn V booster rocket was launched successfully. The triumph over booster power was
achieved at tremendous cost, with a tremendous investment in facilities, and (I consider this to be
possibly the most important characteristic of the program) with tremendous personal dedication on
the part of the individuals involved. Now, for the first time, the question of payload weight can be
handled in proper perspective in concert with other mission variables.

The important questions concerning long-duration missions no longer focus as directly on
rocket technology as was once the case. Now it appears that the critical problems are likely to be
the human-oriented problems. The problem of providing food, may in fact, represent a pacing
technology. On this basis, our progress toward extended lunar exploration and interplanetary flight
may be no faster than our progress with the problems of advanced food technology.

If we now consider the providing of food to be a pacing technology, what are the implications
for establishing an appropriate research program ? First, it is essential that long-range research
goals be stated. Our commitment to a lunar landing in this decade in essence dictates the research
and development requirements for booster power. The goals for a food technology program will not
be as easily achieved as were previous goals but must be delineated nonetheless. Second, the re-
quirements of an appropriate research program should be considered. The level of requisite funding,
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the necessary facilities, and the required personnel should be defined. In brief, a level of effort
must be described which is appropriate for the achievement of the research goals. This procedure
is precisely that of the Saturn V program which led to the development of such facilities as Michoud
Operations.

In working toward the prescribed goals of an advanced food technology program, it will be
necessary to make certain adjustments in our philosophy of research. One important change will
involve greatly increased attention to the socio-psychological variables related to food intake. I am
gure everyone in attendance today recognizes that over long periods of time these variables could
become of greater importance than the actual nutritional structure of the food.

RESEARCH BENEFITS

Now let us assess the benefits which will accrue from a concerted program to advance the
technology of food provisioning. The first benefit is obvious. NASA will be able to provide sus-
tenance for astronauts on long-duration missions which will do much to ensure that they return in a
healthy condition and in good spirits. This is no mean feat and is one which justifies an extensive
research and development program. Another benefit would be assistance in the field of advanced
technology for airline feeding. As a third benefit, there will be a direct economic return to our
nation. New food processing techniques will create additional employment opportunities. Two of
the later sessions in this conference will touch on this topic. The creation of new industries is an
important economic result of technological advances.

Finally, there will be a direct personal benefit to the world, and this may well be the most
important consequence of extended research in food processing. In a recent paper, Dr. Wernher
von Braun stated that ""We must adopt a more hard-headed attitude and consider not only whether a
space project is technologically possible, but whether it has promise of contributing to the economy
or the strength of the country.” The contribution of our food processing research should be signifi-
cant.

In 1955 the arable land per person in the world was generally agreed to be about 1-1/4 acre.
By the year 2000 AD it is estimated that this acreage will decrease to a little more than 1/2 acre per
person. This trend is causing considerable concern among world leaders. Inasmuch as food pro-
ductivity is not evenly distributed over the world, the possibilities of serious famine in certain areas
is quite real within the foreseeable future. Any increase in our understanding of ways to produce,
prepare, store, and distribute food will be of tremendous importance for all nations.

I have attempted to stress the direct importance of this conference to NASA and to long-
duration space missions under consideration for the future. At the moment, we consider the area of
food preparation and in-flight feeding to be a pacing technology for future manned spaceflight. We
also recognize that, in solving the problems in this field, you who are here today will make a contri-
bution not only to NASA and the airlines but also to the economy of the United States and ultimately
to the well-being of all nations.

‘ WALTON L. JONES
Director, Biotechrnology and
Human Research nNivision
NASA Office of Advanced Research

and Technology
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SESSION I

SPACECRAFT PROGRAM

CHAIRMAN: J.W. HUMPHREYS

Director, Space Medicine

NASA Office of Manned Spaceflight



The present conference is sponsored by the National Aeronautics and Space
Administration, the National Academy of Sciences, and the University of South
Florida. As Director of Space Medicine for NASA, my primary concern is with man
as he works in space today and in the near future. We work directly with the space
crews, and we address ourselves to the program from that standpoint.

It certainly is evident from history that man can and will endure great discom-
fort in order to explore. Despite some opposite views, I think man will continue
to explore. I am not perturbed by those who say we should "put man down,’'" so to
speak, and fly only unmanned operations, because I think man will not tolerate this.
A man traveling in space needs only to be provided with a few necessities. His de-
sire to explore and to learn furnishes his motivation. Man needs a habitable envir-
onment and that involves a great many factors. He needs a machine that he can
effectively operate to reach his destination while performing his duties, and he needs
provision for certain necessities of life such as food, water, and waste disposal.

Since the history of food in space is well known to all of you, I shall not present
a detailed account, but rather the following brief comments. In Mercury and
Gemini there were really no great problems or dissatisfaction with the food. I sus-
pect this was true because the entire project was so new. We have encountered
problems in Apollo, and I think it is not particularly strange that we have. The crews
of Apollo 7, 8, and 9 have complained about the food, and this is understandable.
Even though their food was essentially the same as the Gemini food (or was in Apollo
7y, Wally Shirra and his crew stated rather vociferously that it wasn't any good, that
they traded around, that they sampled all the packages, and that they did not eat at
all. Certain improvements were made in Apollo 8 by giving the crew the so-called
"wetpack, " which they liked except for the potatoes; but the astronauts (Borman,
Lovell, and Anders) said that even though they had flown for 14 days in Gemini and
didn't mind it so much, they did mind it in Apollo. Similar reactions occurred in
Apollo 9.

I think we have a reasonably good appraisal of nutritional requirements, although
perhaps this is not yet a permanent standard, and I think we know the method of pro-
viding the essentials of a diet, at least for flights up to 20, 60, or 90 days' duration.
The problem seems to consist of finding a way to influence the crews to eat the food

that is provided. It must be made palatable, and, in addition, worthwhile.
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The present method of space feeding seems to be satisfactory for the near future;
at least it will sustain life. I believe, however, that we shall not be limited to com-
pressed food, dehydrated food, etc. forever. We shall certainly be using larger volumes
of food in the future. There is always the possibility of assembling spacecraft for long
voyages off the Earth, in orbit, or even farther away and on these voyages there will
also be different environments. Cooking with an electric stove today is impossible be-
cause of the gaseous environment of the spacecraft, but that may not always be the case.
Zero G may or may not be continued, and I suspect that in the long run it will not.
These different environments will give us opportunities to use techniques different from
those employed today. We shall still have a preparation problem, but I believe that the
preparation time previously criticized by the crews will not be so important as the crew
numbers become larger and the voyages become longer.

The Apollo crews are very busy, but I believe that this is only temporary.
Certainly, when crews reach a large size, food-service people will be required. We
shall still have, however, a food preparation problem, and we shall still have a storage
problem or a production problem. I think it is essential that we gain the attention of
the entire community - academic, industrial, and governmental - and keep attention
focused on this mundane subject of feeding. Development of subsystems involving
food, water, and waste management has not kept pace with building of boosters and
other sophisticated systems. We must demand adequate attention to these subsystems.

The Apollo Applications Program (AAP) embodies an entirely new concept. It
is the beginning, the embryonic move or step, toward true understanding of man and
his reactions in space. In Mercury, the objective was to project man into space
and return him safely. In Gemini, it was to determine whether man could maneuver
and work in space. Apollo has had only the objective of flying man to the Moon and
bringing him back safely with some lunar samples. We have not yet had an oppor-
tunity to begin to study man in flight, but the whole AAP program is the beginning
of a new era - one, if you like, of orbiting laboratories or orbiting observatories.

It will be much more difficult and much more complex to produce a feeding system
which answers the requirements of experimental protocols and also is compatible
with the spacecraft environment and is within the state of the art.

Certain tradeoffs will be necessary. There are a great many medical, bio-
logical, and behavioral components involved in the AAP, habitability being one of
them. We want to know the factors that can make man's life a little more pleasant
and make man more effective in the space environment. Up to now, he figuratively
has been flying around in the rumble seat of a Model T Ford (a Model A in Apollo),
but the time to improve his situation has come. We cannot do this logically until
we understand more about him and his reactions.

I would like to restress the point that the food system is not a system that can

be considered alone. For example, the food system has a very close interface, and



is dependent to a large extent, upon the water system. In Apollo, we have fuel cells
which produce water and an excess of hydrogen gas; as a result, we have had a large
amount of gas coming out of the water gun. In Apollo 9, the water gun produced a-
bout 60 percent gas and 40 percent water, which meant that the crew filled their

food bag with gas. When they began to hydrate their food they encountered a great
many bubbles, and they swung their bags around in order to try to eliminate some
bubbles. This method did not work at all well - the result was large gas bubbles in
place of small ones. This is only one of the many problems encountered. If one sys-
tem is not functioning properly, another one cannot; there is not quite a domino effect,
but almost.

The waste management system is also a very important one. The crewmen do
not want to defecate because they hate to use the hand-held straddle trench we are
supplying, and I do not blame them. This straddle trench is a bag with a sticky rim
on top, and it is difficult to place it correctly. The men are loath to use the
system, and until the system is improved they are going to continue to be loath to
use it. We hope a better system will be on board in the MOL, the AAP, and other
future flights.

One item which has not been widely mentioned is that in our system the food
discipline of the crewmembers has been poor. I have said this to them, so I will say
it in public: Food and water discipline is something that soldiers learn early or they
do not survive. The space crews have not been very disciplined about their eating -
they have picked, traded, and done as they pleased. That is permissible if no scien-
tific metabolic information is to be obtained but food discipline must be enforced in
flight if we are to determine whether a system is good and how it should be changed.
It is particularly important in those flights in which we have experimental protocols
that.must be complied with.

Much has been said about disposal of the wastes - the bags, the excess food,
etc. On flights in which we need to know the weight of remaining food, it is impor-
tant that nothing be discarded. As you well know, so far we have designed all space-
craft and systems so that they will return to Earth everything not consumed in space,
with the exception of urine droplets or a little waste water. I queslion whether it is
the intent of the space treaty that we be forced to return to Earth all the trash accum-
ulating on space voyages, and the point is currently under investigation. We have

enough trash on Earth; wouldn't it be nice to discard some of it somewhere else!

J. W. Humphreys
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THE ApoLLo FooD PROGRAM MALCOLM SMITH
NASA Manned Spacecraft Center

The orbital Mercury Program flights of astronauts Glenn, Carpenter, Schirra, and
Cooper demonstrated for food system planners that indeed man could consume and digest solid
and liquid food in space. The experience gained in food packaging and in-flight handling led to
the evolution of the Gemini and Apollo food systems and components. Prior to the Gemini pro-
gram, engineers and biologists began in earnest to design and formulate foods and packages which
were acceptable, nufritious, lightweight, low volume, low residue, high energy, and stable at
spacecraft temperatures, which withstood launch vibration, could be consumed in zero gravity,
contained no pathogens, withstood vacuum packaging and oxygen atmospheres, and would re-
constitute with water or saliva. The Apollo and Gemini systems which evolved were the best
possible under the circumstances. Any faults in the system then and now can be attributed to in-
complete understanding of the definitions of food, acceptability, and nutrition as they apply to
spaceflight .

The foods and ;')ackages often exceed physical requirements of the spacecraft, en-
vironment, and ground-based human tesf subjects. The nutrients provided exceed estimated
metabolic requirements of the astronaut. Daily rations were balanced and calculated pre-
cisely. Food weights and dimensions were controlled and measured with microscopic accuracy.
Volunteers ate the food for periods of up to 56 days without physiological or psychological
aberrations. The astronauts were provided with a variety of these specially designed foods
from which to select their in-flight menus. The flight foods were produced, packaged, and stowed
on the spacecraft. Spacecraft were launched and missions completed successfully.

Despite all this, however, the astronauts did not eat, and invariably lost weight. What
could have gone wrong ? With 20-20 hindsight, it has become obvious that a part of the problem
lies in our lack of complete understanding of the psychophysiology of eating. Man and his eating
habits are not easily changed. Good nutrition begins with good food presented to the consumer in
a familiar manner. A "'good" spacecraft may be bigger, faster, more versatile and safer than
the previous one. A "good" spacecraft food system is one which meets system requirements but
is built around good foods that stimulate and satisfy hunger, that are readily prepared, that have
a familiar flavor and texture, that provide diversion, relaxation, security, and adequate quantities
of nutrients to maintain metabolic balance in the particular environment.

The initial Apollo food system was basically the same as that which was provided for the

Gemini Program. The compressed and dehydrated ready-to-eat cube foods included meat, fruit,
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dessert, and bread types. The uniform shape, high caloric density, and variety of flavors made
the food ideally suited for the engineering requirements of spaceflight. Dehydrated fruits, bever-
ages, salads, desserts, meats, and soups which required water for rehydration prior to consump-
tion were available. These "rehydratables" were packaged in a specially designed laminated
plastic bag which had a valve for water insertion at one end and a tube or zero-G feeder at the other
end through which the foods could be consumed. The 3/4-in. diameter of this feeder tube restricted
the maximum food particle size to1/8by 1/4 in. A process to simulate a more natural meat texture
had resulted in a significant improvement in flavor compared with that of the early Gemini products.
Packages of these foods were arranged in meal units based upon nutrient balance and astronaut
selection. Each meal was overwrapped in an aluminum-foil-plastic laminate which also served as

a garbage bag for in-flight stowage of used food packages after each meal. The diet was designed

to provide each astronaut in the command module with his estimated energy requirements of 2800
Kcal/day, 16 to 17 percent protein, 30 to 32 percent fat, and 50 to 54 percent carbohydrate.

Certain foods were fortified with calcium lactate to provide a daily calcium intake of 1000 gm and a
calcium-to-phosphorus ratio of approximately 2 to 1.

This approach to food management had been successful on the 14-day flight of Gemini 7
and had been verified by numerous ground-based altitude-chamber studies conducted by the USAF
and NASA. A number of deficiencies were apparent in the baseline Apollo food system and
development efforts to improve individual ration components for the Apollo Applications Program
were being sponsored by NASA at the U.S. Army Natick Laboratories. The advances in foods
and food systems which were being realized as a result of the USAF Manned Orbiting Laboratory
(MOL) Program were available to NASA. These programs continue to be closely coordinated for
the mutual benefit of both agencies.

At the time of the fire which resulted in the loss of the Apollo 1 crew and spacecraft,
the food system met all of the engineering constraints of the mission while providing adequate
nutrients. Most "creature comforts" such as improved foods and packaging, however, were
relegated to the longer duration flights (28 and 56 days) of the Apollo Applications Program. As
a result of the spacecraft fire in January 1967, each spacecraft system, subsystem, and com-~
ponent received thorough reevaluation and analysis to identify and reduce the hazards of flam-
mable materials. Since nonflammable foods are an impossibility, our attention was directed
toward finding a packaging material which would not support combustion in a pure oxygen environ-
ment. At this point in time, responsibility for design, procurement, and spacecraft integration
of flight foods was transferred to the Medical Directorate at the Manned Spacecraft Center. Prior
to this, our only responsibility in aerospace food systems had been in food and nutrition research
with rather tenuous control of the actual flight item.

Extensive changes in the types of food and packaging will be implemented in an orderly
manner for the forthcoming Apollo flights. These changes are necessary because: (1) In-flight
food consumption is inadequate to maintain metabolic balance (negative energy, loss of tissue fluid,
and electrolytes); (2) meal preparation and consumption requires too much time and effort; (3)
water for reconstitution of dehydrated foods is off flavor and contains large quantities of

6
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undissolved hydrogen and oxygen gas; (4) functional failures occur in rehydratable food packages;
(5) a system of foods and packaging which is more familiar in appearance, flavor, and method of
consumption is needed, and (6) in-flight illness and anorexia must be reduced.

The demands for improvement have not emanated from the astronauts with quite the
strength that the news media would lead one to believe. In fact, the demands have come from our-
selves and the program managers once we realized that an improvement was possible that would
result in a crew that would eat more during the mission and maintain a higher level of morale.

The improved foods and packaging which have been integrated into the Apollo food system are not
new to us or the rest of the consumer and scientific community. For instance, the first real
breakthrough occurred with the most mundane and seemingly simple procedure that the Apollo 8
crew performed on Christmas Day during man's first successful lunar orbital mission. Borman,
Lovell, and Anders opened a thermostabilized flexible can of turkey chunks and gravy and ate with
a spoon! The dish required no water for rehydration since the normal water content (67-percent
by weight) had been retained. This crew had experienced considerable problems with nausea and
vomiting, a water supply with excessive gas and objectionable flavor, and an exciting mission of
critical spacecraft maneuvers to escape the pull of Earth gravity and achieve lunar orbit. They
were about 250 000 miles from home on Christmas Day and faced the possibility of being unable
to escape the pull of the lunar gravity and the possibility of reentering the Earth's atmosphere at
an angle that would deflect them back into Earth orbit with no chance of reentry before fuel or
oxygen supplies were exhausted.

The meal was quite a morale booster. During the preflight menu selection period, the
crew had specifically stated they did not want to have the wetpack on their mission. This was
probably a result of their desire to prevent unrealistic demands on the system and personnel
supporting their mission.

The Christmas dinner of the Apollo 8 mission was in one sense a last-minute affair;i.e.,
actual planning of the components did not start until 3 months prior to flight, but, in truth, de-
velopment had started several years before for NASA and military ration use. The wetpack
turkey and gravy was a heat-sterilized product in a flexible package. Similar products had been
under development and field-tested by the U.S. Army Natick Laboratories as possible replace-
ments for the canned combat rations, with the idea of redueing package weight and allowing the
field soldier greater mobility while carrying the flexible containers in his pocket. The term wet-
pack came into use to describe and differentiate it from the nominal dehydrated Apollo foods which
require the addition of water for rehydration prior to consumption. This type of food had not been
used because of a number of disadvantages of food with normal moisture content. Since moisture
is available for bacterial growth, heat sterilization and a failsafe _hermetic seal is required. The
weight of a wetpack with its 60 to 70 percent moisture content is approximately four times greater
than that of the comparable dehydrated product. Vacuum packaging is virtually impossible in a
high-moisture food and the absolute vacuum of outer space could cause rupture of the package

from internal gas expansion during spacecraft decompression. The possibility of Cl.botulinum



toxin also causes justifiable concern over the use of these products. Each of these potential prob~
lem areas was carefully evaluated and solved prior to the flight.

The success of the wetpacks in the Apollo 8 and 9 missions can be attributed to a combi-
nation of several factors: The men could see and smell what they were eating with relative ease
compared with the complete containment afforded by the zero-G food package; the texture and
flavor of the food was not affected by the characteristics of spacecraft water and frequent incom-
plete rehydration of the freeze-dehydrated item:; and the wetpack does not require tedious instal-
lation of water, kneading, waiting, and manipulation prior to consumption. Overcoming these
"little" irritants is an important part of a successful food system in any situation. Unfortunately,
there has been a tendency to require that all food be of the wetpack type and this extreme swing of
the pendulum was not easy to bring back into line.

We realize that a system based on all wetpack food would become just as monotonous and
objectionable as that with the all-dehydrated approach. For Apollo 10 we shall include five new
freeze-dehydrated foods which will be packaged in a "spoon-bowl" package. This package has a
water inlet valve at one end similar to that of the nominal rehydratable food package. The main
difference will be in the large zippered opening on the other end which will allow access to the
rehydrated food with a spoon. With this large opening, the pieces of dehydrated meat and vege-
tables can be larger and thereby have a more familiar and acceptable mouth feel and flavor.

Many of these foods are preferred over some of the wetpack items.

The use of a spoon while in weightlessness was no simple impulse. Simulations of weight-
lessness and eating from an open package with a spoon had been conducted by the U.S. Air Force
in high-performance aircraft in parabolic flight patterns. Numerous foods, packages, and uten-
sils have been tested in that program and in our own tests. While these aircraft tests are not a
completely accurate simulation because of the short duration of the weightless condition, the re-
sults indicated that our spacecraft test would be successful without undue concern for dispersal of
liquid food throughout the cabin. Subsequent use of open packages and utensils on the Apollo 9
flight was accomplished without difficulty. That crew even experimented with using the spoon to
eat from the nominal rehydratable food package. In retrospect it is easy to see that spoon and
bowl eating would be successful since in the absence of gravity liquid motion is controlled by forces
that are negligible on Earth, e.g., surface tension, capillary action, cohesion, and adhesion.

Food system design for the Gemini and Apollo programs was constrained by requirements
to prepare for worst case situations. The most significant progress in space food systems was
realized on the Apollo 8 mission when the crew calmly went about their business of opening a pack-
age of thermostabilized turkey and gravy that had no zero-G feeder tube or valve for rehydration.
The only support equipment provided was a pair of scissors to open the package and a 10-cent
stainless-steel spoon. The crew ate their wetpack with ease and were highly pleased with the whole
affair. The significance of this feat is not apparent to those who have not been intimately involved
with the program of space food development and integration of life support equipment in manned
spacecraft. The spoon and the "canned" turkey and gravy (heat processed and packaged in a flex-
ible pouch) were significant in that some of the most difficult constraints to space food development
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were lifted in a matter of minutes while man first circled the Moon. The following items are a few
of those constraints:

(1) Vacuum packaging of all food items

(2) Positive containment of liquid food during consumption

(3) Caloric density of food

(4) Tedious procedures for food preparation by rehydration

Design requirements for the Apollo food system were actually more stringent than those
in the Gemini Program. This resulted in foods and packaging for Apollo that were quite similar to
those used on Gemini. It was a generally accepted fact that the Apollo foods would be highly accept-
able and would present no problems of any consequence. We had begun to believe that assumption
ourselves, for, after all, the hot and cold water systems to be available in Apollo would permit the
astronaut to prepare a really hot meal with a chilled beverage. We placed a great deal of reliance
upon the characteristics and quality of the water system. We had good reason for this since
ground-based simulators had proven the reliability of the fuel-cell-generated water system.

All spacecraft life support systems were exhaustively tested during an 8-day manned test
of the command module (designated Spacecraft 2TV-1/101) which was exposed to the thermal and
vacuum conditions of space. The test could not, however, simulate weightlessness. The astronauts
in this test were quite well pleased with the food system and consumed virtually every morsel of
food provided. The crew experienced some difficulty in rehydration of foods because of gas in the
water supply. The quantity of undissolved gas was not consistent but averaged approximately
30 percent by volume. The crew solved this problem by venting the gas periodically from the
food package during rehydration. Venting was accomplished by depressing the food-package water
inlet valve. This worked satisfactorily because the gas and liquid food were readily separated in
the package by gravity prior to venting. This technique would not work in orbit since, in the ab-
gence of gravity, liquids are no longer heavier than vapors and attempts to vent off gas trapped
in the food package to allow insertion of adequate water for food rehydration result in venting
liquid food as well as gas. -

Only minor modifications in the fuel-cell water supply system were possible if launch
schedules were to be maintained. One of the modifications implemented was to reduce the tem-
perature of the hot water from 155° to 135° F. The higher temperature is very close to the boil-
ing point of water at the nominal cabin pressure of 5 psia. The net result of this quantity of gas in
the water supply is that the water is not hot enough to improve the rate of food rehydration, and by
the time all of the required water is added and as much gas is expelled as possible the food is not
hot and usually is incompletely rehydrated because of the small bubbles of gas dispersed throughout
the package which prevent intimate contact of water with food. Also, after several cycles from the
water dispenser, the food package could be distended to the point of bursting and still not have ade-
quate water to rehydrate the food. (The Apollo 9 crew reported that the water supply was approxi-
mately 30 percent water and 70 percent undissolved gas.) All three flight crews have reported an
off-flavor in the water that was not entirely due to the water chlorination procedures. This off-
flavor is probably due to some of the materials used in the flexible tubing. The Apollo 9 crew



found the water so distasteful that they consistently drank water that had been first mixed with one
of the beverage powders.

The list of accomplishments that we can point to after only three Apollo flights is more
extensive than the introduction of more familiar foods and methods of eating. Not quite so dra-
matic but equally as difficult and significant was the design of a nonflammable meal overwrap
which also serves as a barrier to moisture and oxygen, a method of meal orientation, and a garbage
bag. The quantity and variety of rehydratable beverages has been increased and modifications made
to improve the reliability, use, and size of the rehydratable food package. Food and packaging
processing, testing, and inspection procedures have been extensively revised in conjunction with
the USAF MOL development program.

A new approach to supplying food to an astronaut in a full-pressure suit in a possible loss
of cabin pressure has been developed and flight qualified. This contingency feeding system em-
ploys a pontube with a valve to control liquid food flow. It is inserted into the water inlet valve
of a nominal rehydratable food package on one end, and at the other end is put through a port in the
pressure suit helmet. The crewmember squeezes and sucks liquid from the food package through
the pontube and into his mouth. A valve in the pontube allows gradual equalization of the suit
pressure (3.5 psia) with the vacuum of the food package which helps to prevent rupture of the
food package due to sudden pressure change. The food package is further restrained by a zipper-
ed nylon bag to prevent inadvertant rupture. The Apollo food sets also prbvide an oral hygiene
kit which contains a tube of edible toothpaste, toothbrushes, and a spool of dental floss. In list-
ing these accomplishments, we do not imply that they constitute the final answer to a requirement.
Each can and will be optimized for future flights in spite of the heavy activity required to support
missions that are launched on 2-month cycles and the austere staff of personnel available to work
with the systems and problems.

In addition, for the future Apollo program food developments will center around more
thermostabilized wetpacks, a larger variety of intermediate-moisture foods, a spoon-bowl package
that will allow larger pieces of dehydrated foods, and a liquid nutrient dispenser for extravehic-
ular use on the lunar surface that will supplement the nominal lunar module food supply.

The acceptance and effectiveness of the food system for a particular flight can be evalu-
ated by the quantity of food consumed, the functioning of food preparation and dispensing equip-
ment, postflight debriefing comments by the crews, changes in body weight, and biochemical and
psychological measurements. These measurements leave a lot to be desired in both objectivity
and accuracy. We have observed that the nature of preflight briefing on the food system has a
direct effect on the overall acceptance of the foods. The more thoroughly the crews understand
the purpose and design of foods, packaging, and menus, the more likely their reaction in flight
will be favorable.

We must rely heavily upon the evaluation given by the consumer but a favorable postflight
comment cannot be construed to mean success. Postflight inventory of returned foods and packages
and examination of the pilot's log are not without inherent errors. Frequently, critical mission

tasks must be performed and a crewmember will find it hecessary to eat foods programmed
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(and color coded) for one of the other men. The inevitable swapping of foods occurs and these
changes are not always recorded. At one point in the Apollo 7 mission a package of freeze-
dehydrated tuna salad could have been traded for an entire meal. The preference for the salad
was greater than the need for extra foods and the offer to trade was denied. One objective measure-
ment of the effectiveness of the food is body weight changes. These measurements can be mislead-
ing and require careful examination of normal metabolic rates and weight fluctuations which are
not always availuble.

As was observed during the Gemini program, changes in body weight show little or no

correlation to mission activity, mission duration, food intake, and occurrence of in-flight iliness

Preflight and postflight body weights along with estimated caloric intakes of the crew of the first

three Apollo missions are shown in table I. The values of caloric intake attributed to each man
are arbitrary because we could not determine the amount of food trading that occurred. It will

be noted that if our only criteria for successful mission food supply depended upon prevention of
body weight loss we have failed miserably. Weight losses have been recorded on every American
and Russian spaceflight to date. Weight losses will not be corrected only by providing better food
and more of it. First, we must discover methods for insuring that food will be consumed. It is

of little use to expend much effort to minimize the weight and volume of a flight food item if that

item is to be carried into space and returned unconsumed. It is of prime importance to maximize

consumption after which the food must be designed to provide the quantity of critical nutrients

based on rhythmic demands of metabolism, and not on hunger stimuli.

i
§ TABLE I. -BODY WEIGHTS AND CALORIC INTAKE FOR FIRST THREE APOLLO MISSIONS
i
- Body weight, b Energy, Keal
a
= {Av daily
) - in-flight
Mission Av preflight Launch day Recovery Recovery plus caloric
(F-28,F-14, F-5)| (F-O) (R+0) 1 day R+1) intake)
- CDR 195 194 188 191 1966
- APOLLO 7 | CMP 153 157 147 151 2144
LMP 157 156 148 154 1804
- CDR 169 169 161 163 1477
APOLLO 8 | CMP 169 172 164 165 1688
B LMP 146 142 138 139 1339
CDR 161 159 154 156 1924
APOLLO 9 CMP 181 178 173 181 1715
LMP 164 159 153 157 1639
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It has not been possible to measure the precise food intake for each astronaut. We know
the quantity of food stowed preflight and the quantity returned. Meals and individual food packages
are color coded (red, white, or blue) for each astronaut and it should be a simple matter to calcu-
late the precise quantity of food consumed. It is inevitable that the crewmember will exchange
foods or will eat an item from another man's meal if he does not have time to stop required mission
tasks and prepare his meal. When this happens, the astronaut usually records the deviation in his
log book. This system is not completely reliable, and understandably so when one considers the.
types of missions these men are on. What we obtain is a good estimate of each crewmember's
food consumption and an accurate knowledge of the total food consumption by all three astronauts
over the course of the mission.

Apollo astronauts have experienced varying degrees of in-flight illness. Symptoms of
upper respiratory and gastrointestinal viral disease occurred in several of the Apollo 7 and 8
crewmembers. Nausea and vomiting experienced by one of the crew of Apollo 9 presented a real
problem in the early stages of the flight, but the symptoms gradually disappeared and performance
of mission tasks was highly satisfactory. Of course, the thought of food during this period aggra-
vated the situation. During this flight, the problems with gas in the water supply and a very dis-
agreeable flavor were most intense. During some periods, the crew was not able to drink the
water at all and resorted to using rehydratable foods to mask the flavor of the water. The only
foods that were satisfactory for this purpose were the beverage powders, fruit cocktail, and
peaches. The limited supply of these items precluded their use as a sole source of energy, water,
and electrolytes for all three astronauts. To help one of the crew maintain an acceptable meta-
bolic balance, the other crewmen gave him their rehydratable beverages and fruits.

Also, it appears that our preflight diet and procedures require reevaluation, since most
crewmembers have lost weight during the last few days prior to launch. Efforts to calculate pre-
cise preflight requirements and to provide well-balanced meals alone are not adequate to correct
this situation. It is no secret that our intensive efforts to portion and balance inflight nutrients
are of little value if the food is not eaten.

If the space food program has taken on a significant new face, it is in our efforts to im-
prove the foods available, simplify food preparation procedures, improve the erew's understand-
ing of our approach to nutrition, and emphasize the requirements to define in-flight food problems
accurately now, before critical long-duration flights are undertaken. Concurrently with this
approach, we have an active research program to define the nutrient content of actual and pro-
totype flight foods and to define overall and critical nutrient requirements of the man. Even if it
were possible to define nutrient requirements and provide the foods which made these nutrients
available, all would be to no avail if we did not have an equally definitive program to determine
the physical requirements to make food and food systems in the flight environment functional and
psychologically acceptable. Therefore, in the Apollo Program we are placing less emphasis
upon dietary manipulation and increased emphasis on systematic improvement of foods, packaging,
and crew training to determine, or be able to predict, those foods which have the best chance of

being consumed in the flight environment. As we gather this information on food acceptance,
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nutrient definition and modifications to maintain metabolic balance is accomplished. Of course,
the conventional familiar foods are the most likely candidates, but we have no parochial interest
in natural foods to the complete exclusion of synthetics. Indeed, for missions in the not-too-far-
distant future spacecraft food supplies may be partially derived from chemical regeneration of
metabolic waste. The best available food that will most efficiently meet the requirements of man
and machine will always be used. To be acceptable a food must be processed, prepared, and
served in the precise manner that makes it familiar and desirable in the first place.

One of the most frequent mistakes made by food system planners, especially for unique
habitats, is that they neglect to recognize the subtle differences that will have significant impact
on food acceptance. Food prepared in the finest restaurant in town will not necessarily be ac-
ceptable in a spacecraft, a submarine, or even in the home if the overall characteristics of the

consumer and his particular environment are not considered.
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MANNED ORBITING LABORATORY JERRY L. WELBOURN
FeEepinGg SYSTEM REQUIREMENTS United States Air Force

The feeding requirements for the Manned Orbiting Laboratory (MOL) are not the result of
or developed by the feeding system. Rather, these requirements are imposed on the feeding sys-
tem by conditions or factors external to it. The particular type of mission, the spacecraft design
and engineering, and the very nature of space travel impose restrictions on the feeding system.

The mission of the MOL requires that two men be fed for 30 days. This requirement pre-
sents a great challenge because of the length of the flight. Much greater emphasis must be placed
on the variety, acceptability, and convenience of the foods than would be necessary for a shorter
flight. Variety and reduced repetition is essential to prevent food monotony, so a 6-day menu
cycle has been established rather than the usual 3- or 4-day cycle. A sufficient number of accept-
able foods must be available to fill the menu. A screening test is required during the development
of a space food; each item must be rated at least 6.0 on a 9-point scale by a small, trained panel
at two different stages of development. The true degree of acceptability will be measured by the
results of long-term chamber simulator runs and crew-feeding tests. FEach 6-day-cycle menu
will be individually tailored by a computer to the preferences of each pilot. It is realized that the
foods must be acceptable or sufficient nutrients will not be consumed.

Convenience influences acceptability, consumption, and morale and thus is a requirement
levied on the feeding system. No one likes to spend time preparing food nowadays, least of all a
pilot ina spécecraft. In an effort to minimize preparation time, the food for a day is divided into
three snacks, a main meal, and a separate package of beverages (table I). In order that con-
venience can be measured, time requirements have been set. Ten minutes is allowed for the re-
trieval and preparation of each snack meal, and a total time (including consumption and waste
stowage) of 45 minutes is allowed for the main meal.

Rehydration time and handling are factors in determining convenience, and as such be-
come measured quantities. Any one item can take up to 10 minutes to be rehydrated, but the
average time for all items must be 5 minutes or less. The manipulation time allowance, which
is the time to retrieve, open, and inject water if necessary, is a maximum of 5 minutes for any
one item with an overall average time of 2 minutes.

The food packages and overwrap are to be color coded to identify each crew member's

food, and each cell of the food stowage liner will be identified as to day of use.
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TABLE I.-TYPICAL MOL MENU FOR A DAY

Item Gross energy, Kcal Item Gross energy, Keal
Meal A Meal D
4 Bacon bars 102 4 Apricot cubes 132
4 Pineapple cubes 130 4 Peanut cubes 143
4 Strawberry cereal cubes 123 8 Cinnamon toast 97
355 372
Meal B Beverage composite
4 Brownies 111 Cocoa 195
Shrimp cocktail 149 ' Tea, with lemon and sugar 31
Beef and gravy 193 Grapefruit drink 80
Corn bar 112 Orange drink 80
Chocolate pudding 313 Pineapple-grapefruit drink 80
878 Orange-grapefruit drink _80
. 546
Meal C
4 Pineapple fruitcake 274 Total kcal this menu 2563
4 Coconut cubes 138 Av Kcal/day 2579
412 Av wt food/day 539 g

SPACECRAFT DESIGN AND ENGINEERING CONSTRAINTS

The design and engineering of the spacecraft impose certain constraints on the feeding
system. The MOL will have a food installation, where the pilots will eat, separate from the other
work areas. This feeding console has two food stowage compartments, one above the other and
one for each pilot. An area above the compartments contains the water dispensers, package opener,
and other accessory items. Inside each compartment, which is approximately 25 by 15 by 17
inches, is a nylon food stowage liner. This liner is divided into 16 cells. Each cell is about § by
4 by 17 inches and will hold two ration packs, that is, food for one man for two days. One cell will
be empty and will be used to store the food wastes from the first 2 days. The compartments pro-
vide 195 cu in. in which to store enough packaged food for one man for one day.

The weight allowance for one man for one day is 1.7 1b. If the food contains the desired
4.9 Kcal/g it must weigh about 1.17 Ib; 0.53 Ib , or about 33 percent of the total weight, is left
for packaging.

The packaged foods must withstand maximum temperature and relative humidity of
100° F and 100 percent, respectively, and an atmosphere of 70 percent oxygen and 30 percent
helium with a pressure of 5 1 0.2 psia.
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The water is provided by the fuel cell, and a silver ion generator provides for suppression
or control of microbiological contaminants. The water has a pH of 6 to 8 and the system is capable
of providing 22. 6 fluid oz of potable water at 40° to 70° F and at 145° to 155° F at any one time.
The cold water is dispensed in 1_oz increments and the hot, in 1-oz increments. Both are trans-
ferred at the rate of 5 fluid oz/min with the delivery pressure maintained within 26 to 33 psia. The
water system has a daily capability of about 2600 ml per crewman.

The packaging materials are restricted by the flammability and offgassing requirements
which apply to all nonmetal materials in the spacecraft. There are established standards for de-

termining these requirements.

SPACE TRAVEL CONSTRAINTS

Man requires a special feeding system when he travels in an artificial environment
through the weightless voids of space. The food must be nutritionally adequate. The effects of
the stress and conditions of space travel on the metabolic requirements of man are not completely
known, but the figures in table II are based on our best experience to date. These requirements
will be used as constraints in the computer selection of menus for individual crew members. Nu-
tritional adequacy becomes especially important for a flight of 30 days. Caloric distribution of
the ration has been set at 27 to 34 percent fat, 10 to 15 percent protein, and 50 to 58 percent

carbohydrates.

TABLE IL. -RECOMMENDED NUTRIENT ALLOWANCES FOR AEROSPACE RATIONS
ESTABLISHED BY USAF SCHOOL OF AEROSPACE MEDICINE, BROOKS AFB, TEX.

Gross Fat, N, Ca, P, Mg, Na, Cl, K,
Type Energy,
Kcal mg mg mg mg mg mg mg mg
Allowances/Kg . .
lean body wt 45 1500 160 18 27 4 50 60 40
Allowances for
average 60-Kg
lean body wt/
man
Mini _ _ __ . - _ 2600 78 000 9600 800 ]1200 | 240 2800 | 3500 | 2300
Maxi _ _ _ _ ___ 15 500 | 1200 |1800 | 400 4400 | 5000 | 4000

The foods must be compatible with the pilots; that is, they must neither produce gas nor
cause constipation, diarrhea, or any other gastrointestinal upset. This can be best determined dur-
ing the simulator tests at the School of Aerospace Medicine and the crew-feeding tests.

There are no firm requirements at this time as to the size of the individual bites of food or
the rehydratable portions. These factors are being studied to determine the best and most efficient

size or sizes.
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Strict food safety is a requirement of all space-feeding programs. The use of a clean
room for the production of MOL foods is required, as is minimum delay in processing to avoid ex-
cessive exposure of foods to oxygen and moisture. In addition, the producer must keep records
of ingredient origin and production history for each end food item. The microbiological standards
for MOL foods are given in table III. They are the same as or quite similar to those used for
other spaceflights.

TABLE III. -MICROBIOLOGICAL STANDARDS
FOR MOL FEEDING SYSTEMS ASSEMBLY

Microorganism Count permitted
Total aerobic plate count - - - - - - - - Total not greater than 10 000/g
Total coliform count - - - - - - - - - - Total not greater than 10/g
Fecal coliform count - - - - - - - - - - Negative in 1g
Fecal Streptococei count - - - - - - - - Not greater than 20/g
Coagulase positive Staphylococei - - - - Negative in 5g
Salmonellae - - - - - = = = = - - - _ _ Negative in 5g

When one travels in a closed environment in space, food wastes must be treated to pre-
vent the formation of gas, growth of microorganisms, or production of any noxious or toxic sub-
stances for the days under ambient spacecraft conditions. The chemical agent 8-hydroxyquinoline
sulfate has been used.

Foods for space travel must be specially packaged. The packaging and packing re-
quirements are:

(1) Packaged food and overwrap:

(2) Evacuated and flushed 3 times with purified nitrogen at 2 to 3 psig and
then evacuated to 2 mm or less mercury absolute pressure.

(b) 16 to 24 hr after sealing each package or pack is subjected to 2 vacuum
integrity test.

(2) Packaging material:

(a) Peel strength, 200 g/in. width at 50 mm/min.
(b) Heat-seal strength, 1850 g/in. width at 50 mm/min.
(c) Burst pressure, greater than 9 psig.

The packaged food cannot be put on a spacecraft unless it has been tested to ensure that
it will withstand the rigors of space travel under the conditions it may encounter. Therefore, the
food items, in addition to the usual quality control and inspection during production, must undergo
flight qualification testing. This consists of four tests, the 30-day environment, acceleration,
vibration, and acoustical tests, as follows:
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(1) Chamber environment, 30 days:
(a) Evacuate to 50 i pressure and hold until temperature reaches 950 + 50 F.
(b) Repressurize with heated, humid gas composed of 70 percent oxygen and
30 percent helium.
{c) Temperature cycled 20 times between 95° ¥ and room ambient temperature.
{d) Completion - examine package and food for defects.
(2) Acceleration: 5G forward and 2G aft when food in operative mode and 0.5G along
two perpendicular lateral axes or 5G along three orthogonal axes; test duration,
2 min.
(3) Vibration: 10 to 2000 cps on each of three principal orthogonal axes; test duration,
3 min.
(4) Acoustical: 118 to 128 db over six typical octave bands.
In order to obtain space foods that meet the many specified requirements it is necessary
to have good, realistic production documents for each item. The development of adequate space-

food production documents is a requirement of our system.
CONCLUDING REMARKS

These are the requirements around which the feeding system must be designed. Although
they are restrictive, a good feeding system can still be provided. By proper management and de-
sign it may be possible to gain some leeway in weight and volume. In cases where a significant
improvement can be made in the feeding system by changing a requirement, attempts will be made

to change the requirement.
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QUANTIFYING AND IMPROVING MANNED ROBERT L. FLENTGE
ORBITING LABORATORY Foob United States Air Force

The contract for the Manned Orbiting Laboratory (MOL) Feeding System Assembly was
awarded in September 1967 to the Whirlpool Corp., St. Joseph, Mich. At that time NASA flight food
experience was based primarily on the manned Gemini flights. Apollo flights were anticipated but
the food was designed and produced on the basis of the Gemini flight experience.

NASA did not fly a feeding system again until late in 1968. During this time, NASA relied
quite heavily upon MOL food production and simulator testing for maintaining space-feeding expertise.
Since the flight of Apollo 7 the flow of information has reversed, and the MOL feeding system opti-
mization has benefited from NASA's flight experience.

The MOL feeding system contract is a straightforward document. The Gemini qualified
feeding system is defined and quantified, allegedly in sufficient detail to allow production and flight
qualification. Ample documentation exists to define the feeding systems used aboard the manned
Gemini flights.

With the expectation that procurement of MOL feeding system foods for validation in
simulator studies would be a sim_ple matter, an order for food was initiated. The School of Aero-
space Medicine was to conduct these simulator studies early in 1968 in response to requirements
defined by the MOL Systems Office. The first production started soon after official notification of
the food requirements. At this point the lack of sufficient quantification of the space foods became
painfully apparent. It became evident that a comprehensive, integrated effort was a necessity in
order to assure complete and accurate quantification of the food items listed on the MOL contract
schedule. Forty-five items were included in this schedule. In September 1967 these foods were
as follows, where GFP denotes Government furnished property from the U.S. Army Laboratories,
Natick, Mass.

Rehydratable foods:

(1) Applesauce, instant (freeze dehydrated)

(2) Banana pudding

(3) Beef and gravy, dehydrated

(4) Beef with vegetables, dehydrated

(5) Beef pot roast, dehydrated

(6) Butterscotch pudding

(7) Canadian bacon and applesauce, dehydrated
(8) Chicken and gravy, dehydrated

(9) Chicken and vegetables, dehydrated 91



(10) Chicken salad, dehydrated
(11) Chocolate pudding
(12) Corn bar, cream style, dehydrated
(13) Corn chowder
(14) TFruit cocktail (bar)
(15) Peach bars
(16) Salmon salad
(17) Sausage patties (pork)
(18) Shrimp cocktail, dehydrated
(19) Spaghetti with meat sauce, dehydrated
(20) Toasted oat cereal
(21) Tuna salad
Beverages:
(22) Cocoa
(23) Grapefruit drink, GFP
(24) Orange drink, GFP
(25) Orange-grapefruit drink, GFP
(26) Pineapple-grapefruit drink, GFP
(27) Tea and sugar
Bite-size foods:
(28) Apricot cereal cubes
(29) Apricot cubes, GFP
(30) Bacon bars
(31) Beef bites, dehydrated
(32) Beef, sandwiches, dehydrated (bite size)
(33) Brownies, bite size
(34) Cheese sandwiches, dehydrated (bite size)
(35) Chicken sandwiches, dehydrated (bite size)
(36) Cinnamon toast, dehydrated (bite size)
(37) Coconut cubes, GFP
(38) Date fruitcake (bite size)
(39) Gingerbread (bite size)
(40) Peanut cubes, GFP
(41) Pineapple cubes, GFP
(42) Pineapple fruitcake (bite size)
(43) Sausage bites, dehydrated (pork)
(44) Strawberry cereal cubes
(45) Toasted bread, cubes, dehydrated
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By September 1968 some of the food items had been changed and the following foods were
on the schedule. GFP denotes Government furnished property; FI denotes food with im-
proved to enhance texture, flavor, stability, and rehydratability; ID denotes an item dropped because
it was deemed impractical to produce because of manufacturing problems, acceptability, and
stability; and R&D denotes a food item deemed salvageable and returned to the laboratory for up-
grading and improvement.
Rehydratable foods:
(1) Applesauce, instant (freeze dehydrated)
(2) Banana pudding, FI
(3) Beef and gravy, dehydrated, FI
(4) Beef with vegetables, dehydrated, FI
(5) Beef pot roast, dehydrated, FI
(6) Butterscotch pudding, FI
(7) Canadian bacon and applesauce, dehydrated
(8) Chicken and gravy, dehydrated, FI
(9) Chicken and vegetables, dehydrated, FI
(10) Chicken salad, dehydrated
(11) Chocolate pudding
(12) Corn bar, cream style, dehydrated, FI
(13) Corn chowder
(14) Fruit cocktail (bar), FI
(15) Peach bars
(16) Salmon salad
(17) Sausage patties (pork)
(18) Shrimp cocktail, dehydrated
(19) Spaghetti with meat sauce, dehydrated
(20) Toasted oat cereal
(21) Tuna salad
Beverages:
(22) Cocoa
(23) Grapefruit drink, GFP
(24) Orange drink, GFP
(25) Orange-grapefruit drink, GFP
(26) Pineapple-grapefruit drink, GFP
(27) Tea and sugar
Bite-size foods:
(28) Apricot cereal cubes
(29) Apricot cubes, GFP
(30) Bacon bars
(31) Beef bites, dehydrated, FI
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(32) Beef, sandwiches, dehydrated (bite size): ID
(33) Brownies, bite size: ID R&D

(34) Cheese sandwiches, dehydrated (bite size): ID
(35) Chicken sandwiches, dehydrated (bite size): ID
(36) Cinnamon toast, dehydrated (bite size): ID
(37) Coconut cubes, GFP

(38) Date fruitcake (bite size)

(39) Gingerbread (bite size): ID R&D

(40) Peanut cubes, GFP

(41) Pineapple cubes, GFP

(42) Pineapple fruitcake (bite size)

(43) Sausage bites, dehydrated (pork)

(44) Strawberry cereal cubes

(45) Toasted bread, cubes, dehydrated

Representatives from the Whirlpool Corp. and the U.S. Army Natick Food Laboratory
agreed that the production guides were not suitably standardized to serve as specifications. At
this point, we undertook to involve the responsible technologists in defining the inconsistencies
of the production guide system and suggesting corrective action. The most obvious incon-
sistencies were:

(1) The food production guides were not standardized in format or confent.

(2) The quality assurance provisions were incomplete and awkward to administer.

(3) Food end-product requirements lacked definitization.

(4) Updating of analytical techniques with increased experience and product development
had lagged.

(5) The production guides required incorporation of previously unrecorded changes in formu-
lation and production procedures.

A brief explanation of these inconsistencies is warranted at this time. The food production
guides as represented to the MOL Systems Office had been used by NASA for procuring flight foods.
However, the flexibility of these guides allowed NASA to modify and optimize foods from flight to
flight. The early spaceflight experience was intense, and timely responsiveness for food modifi-
cation was imperative. The documents were not in any way to be construed as specifications. The
subsequent incorporation of these production guides into the MOL feeding system contract as
specifications posed a unique contracting problem. The contractor assumed the challenge that these
foods presented and attempted to produce foods described in the documents.

' Previous NASA food-production history served as a sound basis on which to determine
realistic end-product requirements. Reevaluation of sampling plans and quality assurance provisions
in light of NASA production experience gave us workable, but admittedly incomplete, sampling tech-
niques. Microbiological testing methods had been thoroughly reviewed during the Gemini flights and
were improved in workability and reliability. However, the production techniques, raw ingredients,
and testing procedures did not adequately reflect changing production methodology, and they added
confusion and uncertainty to interpretation of the production guides.
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The first delivery of MOL simulator foods represented a best effort on the part of the con-
tractor to produce a product as it was intended. The documents used to produce this best effort

were partially corrected prior to food production but were extensively revised and updated after

the second MOL food simulator study in June 1968. The experience gained from the two MOL food

shipments proved valuable to both MOL and NASA. We began to realize that if we ever intended
to describe foods and feeding systems before the fact, we would need considerable effort expended
on documenting and quantifying the end products. The contractor for both the Apollo and MOL
feeding systems was the logical choice to assume this effort. Consequently, Whirlpool Corp. was
directed to expend development effort, under the development portion of the MOL Feeding System
Assembly contract, toward updating and definitizing production documents. Technical and edi-
torial monitoring was and is carried out through the Aerospace Feeding Systems Liaison Officer
at the Natick Labs.

The effort to date has resulted in 24 rewritten documents:

Title Document Number

(1) Beef, rehydratable, dehydrated 3C
(2) Beef, bites, dehydrated 4C
(3) Chicken and gravy, dehydrated ’ 7B
(4) Chicken and vegetable, dehydrated 8B
(5) Chicken salad, dehydrated 10B
(6) Cinnamon toast, dehydrated (bite size) 21B
(7) Cereal fruit cubes, dehydrated (bite size) 23B
(8) Toasted bread cubes, dehydrated (bite size) 24B
(9) Cocoa beverage powder 26B
(10) Freeze-dehydrated peach bar 27B
(11) Freeze-dehydrated fruit-cocktail bar 28B
(12) Puddings (apricot, banana, butterscotch, and chocolate) 29C
(13) Sugar-coated corn flakes and toasted oat cereal 30B
(14) Fruitcake (bite size) 34B
(15) Pea bar, sweet, dehydrated 35C
(16) Tea, instant w/sugar and lemon 37B
(17) Dehydrated soups (corn chowder, pea soup) 38B
(18) Corn bar, cream style, dehydrated 41C
(19) Applesauce, instant, frozen, dehydrated 46A
(20) Potato soup, frozen, dehydrated 49
(21) Cracker cubes, compressed 51
(22) Drink, natural fruit flavored, powdered 53
(23) Beverage breakfast, powdered 54
(24) Imitation ice cfeam mix, dehydrated, cubed 55

The objectives of this effort have been threefold: (1) to standardize the format and
the content of all space-food production documents, (2) to establish realistic end-product
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requirements and quality assurance provisions, and (3) to reflect technological improvements in the
food production documents. The rewriting effort will be completed shortly. The most critical re-
quirement for food production documents today is assurance that the mechanism for timely inclusion
of proven improvements in space foods is preserved. This demands the establishment of a meaning-
ful and comprehensive feedback system. Both flight and simulator experience must be used to
assure a practical and workable food system.

Ultimate quantification of the MOL feeding system will continue to be a fluid and challeng-
ing endeavor, responsive to NASA flight experience, food technology improvements, and MOL
crew and simulator study input. The improvement of the foods we presently have in the MOL menu
is largely dependent upon the reactions gained from test subjects involved in the simulator studies
at the USAF School of Aerospace Medicine. Recent feedback from the manned Apollo flights has
given us added insight into the acceptability and palatability of our present space foods. Improve-
ment and modification of foods for aerospace use can be best accomplished when we consider the
following requirements:

(1) Human factors criteria that play an important part in determining the method of food
retrieval, preparation, consumption, and waste storage.

(2) Stability of the food when it is subjected to adverse environmental conditions, includ-
ing heat, moisture, light, vacuum packaging, and acoustical vibrations.

(3) Nutritional composition of the food or its ability to furnish a definite nutrient pattern
within the set volume and weight constraints.

With consideration of the aforementioned criteria, we undertook to design an evaluation
system that would give us sufficient information to predict the success or failure of new and
modified foods for use in space feeding applications. We were obliged to consider such practical
criteria as the number of high-cost samples we could constructively evaluate and the requirement
for timely submission of recommendations. Experience has proven that a trained sensory evalua-
tion panel evaluating space foods subjected to controlled temperatures and time provides valuable
insight into the stability of the foods. The information proves valuable when a decision as to
whether the food should be flown or subjected to additional testing is sought.

The MOL Feeding System Assembly contract has a provision stating that all developmental
and production foods are to be submitted to a sensory panel for evaluation. Accurate panel results
are dependent upon the size of the panel, the design of the test, and the analysis of the results, to
name but a few variables. The most critical need, however, is to be able to assure reproducibil-
ity between different testing organizations.

With no real flight data early in the MOL contract period, we relied quite heavily upon the
experience of the contractor and the technologists in determining and evaluating human factors
elements. Gemini foods that had been upgraded and improved for Apollo were reexamined. Tech-
nical advances allowed us to incorporate more natural characteristics into the foods that were
being squeezed from flexible pouches. Bite-size foods that did not require preparation after open-
ing the package still posed problems. Coatings that had been designed to control crumbling in the
critical Gemini flights took on less importance with Apollo and MOL.,
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Space food as we know it today is essentially the result of a cooperative NASA/MOL

development and testing effort. Production experience coupled with simulator and flight experience

has given us a food system that is essentially sound. Formulation changes that have proven more

acceptable to simulator subjects and in limited crew testing have been incorporated into the MOL

foods. Apollo has incorporated some of the more desirable immediate advancements in each

flight. The original 45 space food items in the MOL schedule have grown to 54 food items:
Rehydratable foods:

@)

@)

@3)

(4)

(5)

(6)

(M)

(8)

C))
(10)
(1)
12)
(13)
(14)
15)
(16)
a7
(18)
19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
27)
28)
(29)
30)

Applesauce, instant (freeze dehydrated)
Banana pudding

Beef and gravy

Beef and vegetables
Beef pot roast
Butterscotch pudding
Canadian bacon and applesauce
Chicken and gravy
Chicken and vegetables
Chicken salad

Chocolate pudding

Corn bar (cream style)
Corn chowder

Fruit cocktail

Peach bars

Salmon salad

Sausage patties

Shrimp cocktail
Spaghetti and meat sauce
Toasted oat cereal

Tuna salad

Cheese soup

Cream mushroom soup
Veal in barbeque sauce
Pea soup

Lobster bisque soup
Beef hash

Cream of chicken soup
Potato soup

Sugar-coated corn flakes

Beverages:

31)
(32)

Cocoa

Grapefruit drink
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(33) Orange drink
(34) Orange-grapefruit drink
(35) Tea and sugar

Bite-size foods:

(36) Apricot cereal cubes
(37) Bacon bars

(38) Beef bites

(39) Date fruitcake

(40) Pineapple fruitcake

(41) Sausage bites

(42) Strawberry cereal cubes
(43) Toasted bread cubes
(44) Sugar cookie cubes

(45) Smoked beef bites

(46) Orange cereal cubes
(47) Custard cubes

(48) Creamed chicken bites
(49) Cheese cracker cubes
(50) Barbeque beef bites
i51) Cinnamon toasted breat: cubes
(52) Graham cracker cubes
(53) Lemon cereal cubes

(54) Beef stew bites

Throughout the space-feeding program, from malted milk tablets in the first Mercury
flights to our present dehydrated and thermostabilized foods, reliability and safety have been the
watchword. A good portion of reliability can be attributed to food packaging. The food processing
itself contributes largely to the initial food quality and the food's ability to resist extremes of en-
vironment when packaged properly. Classically, therefore, space foods are designed and pro-
duced to assure highly reliable foods after long-term storage. We wish to assure maximum flex-
ibility of food availability for any flight configuration.

At the present time the foods we fly routinely will withstand temperatures of 100° F for 6
months or longer, and many of the foods will withstand up to 1 year at 100° F. Dehydrated foods
can be expected to be subjected to these conditions without serious detriment to the flavor, but
their acceptability is certainly not improved. NASA is presently in the process of a comprehensive
2-year study of space food stability and nutrient analysis. The results should give us valuable in-
formation about the expected changes in food on long-duration space missions. By combining
several of the more desirable storage environments, e.g., by freezing dehydrated foods, we can
expect to extend the storage life of current foods significantly. Frequently we are approached with

the "new" concept of using ready prepared convenience foods, either fresh, refrigerated, or-

28



frozen. Stability remains the ill-defined quality characteristic that defies quantification and rele-
gates these foods to short-term planned usage.

MOL and NASA made available to the U.S. Army Natick Laboratories sufficient financial
assistance to construct an environmental-control food-processing facility. Construction of this
facility will afford the research staff an environment wherein studies of processing variables may
be quantified and optimized. Extraneous contamination can be controlled and frequently omitted
from the food processing procedures. The ultimate results will help define and specify require-
ments for foods expected to endure long periods of storage or exposure to rigorous environmental
conditions.

Variety and improvement of foods will continue as long as technology in food research is
active. New-generation spacecraft will allow much of our food development and research to be
reapplied to the next generation of spacecraft. Compression and miniaturization of operational
rations have been studied for many years by the U.S. Army Natick Laboratories. This effort,
closely allied with the space food development effort, should serve as a sound base for the new

and unique feeding applications we anticipate for the future.
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EVALUATION OF J. E. VANDERVEEN *
Space FEepiInNG SYSTEMS USAF School of Aerospace Mediecine

The design specifications placed upon the feeding systems of space vehicles were numerous
and restrictive. Many of the specifications taken independently were not difficult to attain; however,
the effect of specification interactions created binding limitations. Consequently, the food developed
for space missions and the associated packaging and other components and factors which made up
the ultimate feeding systems were not completely verified. The USAF School of Aerospace Medicine
at Brooks Air Force Base was assigned by the Manned Orbiting Laboratory (MOL) Systems Office
the task of evaluating the MOL Baseline Feeding System to be used in meeting its 30-day flight re-
quirements. This effort was jointly supported by NASA.

The objectives of this evaluation were to identify any deficiencies in the expanded Gemini/

"Apollo systems, to perform a functional verification for 30 days, and to develop new criteria for

future space feeding systems. The evaluation was divided into four areas: (1) life-support evalua-
tion, which included studies of the nutritional value afforded by the food; (2) food acceptance and
preference _e;ra]uhtian, which included the rating of individual foods, measurement of food con-
sumption, and the psychological benefits provided; (3) systems interface, which included study of
efficient use of weight and volume allowances, the reliability of systems components, the timeline
production of metabolic, food, and packaging waste, and the potential for environmental contami-

nation; and (4) human factors, which included simplicity, ease of handling, and safety.
PROCEDURES

The procedures used in this evaluation are described in published articles (refs. 1 and 2)
which are too detailed to cover entirely here. Briefly, this research was accomplished in a low-
pressure chamber (shown in fig. 1). The environment of this chamber was approximately that
planned for the MOL vehicle, as follows:

(1) Chamber pressure: 27,000 ft or 258 to 260 mm Hg

(2) Temperature range: 23° to 25° C

(3) Humidity range: 30 fo 60 percent

(4) Partial pressure of the constituent atmospheric gases:

(a) Water vapor pressure: Approximately 10 mm 1 3
(b) Oxygen partial pressure: 182 mm or 70 percent
(¢) Helium partial pressure: 76 mm or 18 to 20 percent

(d) Carbon dioxide: <« 1.6 percent or < 5 mm Hg

*
This research was supported by NASA Defense Purchase Request A-1374A (RD-T7)
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Figure 1. -Low-pressure chamber used to evaluate space feeding systems.



Volunteer airmen from the USAF Air Training Command were selected as subjects;
selection criteria used were medical records, results from aptitude examinations, and personal
interviews concerning motivation. Three studies were accomplished to evaluate the MOL Baseline
Feeding Systems. Each study used four subjects who lived in the low-pressure environment for
32 days. The subjects were required to rate each food item after consumption. In addition, they
were required to inspect the food packaging for air leaks and other failures, measure the size of
food bites and main-meal entrees, observe evidence of crumbling in bite-size foods, note re-
hydration characteristics of powdered and main-meal entrees, subjectively measure the hard-
ness of bite-size food, note changes in color of the foods, measure time required for rehydration
of main-meal entrees, and measure temperatures of the food following rehydration. In addition,
each subject was required to keep a log of his impressions of the foods day by day throughout the
entire study.

The subjects were provided a menu designed to meet their individual nutritional re-
quirements based on lean body weight measurements (ref. 3). The subjects were also required
to consume all foods which were to be tested for a period of 12 days prior to the start of the
study. Their individual likes and dislikes were then formulated into the study menus with the use
of a computer (ref. 4). Metabolic balances were performed every 4 days of the study for 8
nutrients. Prior to and immediately following the 32-day study the subjects were given an ex-
tensive physical and psychological examination to detect any changes associated with the study.

RESULTS AND DISCUSSION

The digestibility of the major nutrients is shown in table I. These data d.emonstrate that
these foods are exceptionally well utilized. The values are approximately 5 to 10 percent higher
than those reported for standard rations served in military dining halls. Body weight changes for
all subjects were maintained within 1 kg throughout the entire 32-day period. Changes in body
composition, however, were noted which were attributed to the level of activity in the chamber.
Positive balances for calcium, nitrogen, and phosphorus were maintained. Balances for potassium
and magnesium were variable and frequently in the negative range; this was attributed to the
marginal levels of these elements in the food. Balances for sodium and chloride were highly
variable; this was attributed to the inactivity of certain subjects. Overall, it must be concluded

that these foods are capable of providing adequate life support.

TABLE I. -UTILIZATION OF NUTRIENTS

Metabolic study
Nutrient X XI XII
Protein 92.9 94.8 94.6
Fat 96.5 97.5 97.3
Energy 95.8 96.8 96.9
Me'tabolizable, in%
Energy 91.5 92.0 92.5
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The food acceptance and preference studies must be analyzed with extensive considerations.
All food ratings were above 6 on the 9-point hedonic scale. However, it must be pointed out that
none of the subjects were trained in rating foods, and each subject was afforded the opportunity to
eliminate unliked food from his menu. Previous research in this area has shown that food accept-
ance and consumption are not directly equatable. If allowed freedom of choice and rejection,
certain foods rated 9 on a hedonic scale will not be consumed at the 100-percent level, whereas
some foods rated lower than 9 are routinely consumed at the 100-percent level. In these studies
with only freedom of choice permitted, all subjects had no problem in comsuming 100-percent of
their menu.

The subjects' logs and critique forms provided many comments concerning food texture,
flavor, and color that are worthy of note. The rehydratable entrees were criticized for loss of
texture when forced through the feeding port of the zero-G feeder. The subjects also felt that the
color of foods was less than desirable before hydration, particularly the spaghetti and meat sauce
and the salmon salad. Additional green vegetables would provide more color.

Many subjects noted a change in flavor and taste on their return to ground level. They
indicated that the food had more flavor when eaten at 1 atmosphere of pressure. Such flavor
changes have been noted for precooked frozen foods also. It may be associated with odors con-
centrated in the chamber, or there may be some physiological change associated with taste in the
low-pressure, altered gaseous environment.

In the study of systems interfaces, serious incompatibilities were revealed. In the
second study, flight-qualified packaging was used, and 14.4 percent of the zero-G feeders failed.
The failures were of three types: (1) Delamination with Subsequent rupture of sealing layer,

(2) leakage around the rehydration valve, and (3) valve failure due to improper tolerance on
O-ring groove. The delamination was the result of poor adhesive in a lot of packaging material.
All the deficiencies were corrected and the failure rate was less than 1 percent during the third
study. The delamination was avoided by the use of a new lot of packaging material which was pro-
duced just prior to use. It was later shown in our laboratories that the adhesives used in the film
laminate are moisture sensitive. Even the moisture in room air was sufficient to render the ad-
hesives ineffective over a 60-day period. The leakage around the rehydration valve was corrected
by the use of shrinkable Teflon to secure the valve in the package.

In evaluation of the utilization of weight and volume, it was shown that packaging con-
stituted 35 percent of total weight. The individual packages of food were of a shape which pro-
hibited efficient use of the allowable volume.

The timeline analysis of food preparation, food consumption, and waste management
reveals excessive expenditure of time for these functions. The individual mealtime ranged from
18 to 42 minutes. Procedures for rehydration and consumption of foods are especially complicated
and difficult to perform. During periods of intense activity, the tendency to avoid foods requiring
rehydration is great. Frequently, subjects reported that they would start eating bite-size foods
while waiting for the main meal entrees to rehydrate. This procedure would decrease their
appetite because many of the bites were sweet dessert items.
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Another problem associated with the feeding system design is the transfer of heat in
rehydratable foods. Temperatures measured on hot foods were routinely lower than 100° F while
cold foods were frequently above 55° F. The extent of heat exchange was attributed to both the
lack of insulation afforded by the package and the time required for rehydration and consumption
of the food.

The package material used for the food was found to have substantial resilience. This
material provided excellent protection for the food but created problems with stowage. In addition,
this resilience and the design of the zero-G feeder contributed to a high residual food level (food
which could not be squeezed out of the zero-G feeder). The subjects made every effort to remove
all the food: however, from 5 to 10 percent of the main-meal entrees was left in the zero-G
feeders. The quantity of residual food is important since this necessitated the use of an
antimicrobial agent which would not be needed if all food could be removed from the package.

Another important area of consideration under the topic of systems interfaces is the pro-
duction of metabolic waste. Voiding in zero G is difficult, and the equipment used for storing
and treating the waste is crude. The pilots have confided frequently that they would rather exist
on insufficient nutrient intake than face frequent defecations. They will not eat any foods they
suspect will promote frequent defecations. The foods presently used for space feeding provide
excellent results in gastrointestinal bowel control. The data in table II show that both the number
of defecations and the amount of fecal matter produced were reduced. In comparing this with
data collected during the consumption of regular food, there is a 50-percent reduction in both the
number of specimens voided and the quantity of materials used. Subjective measurements of
flatus during these studies revealed that the amount was small enoﬁgh to preclude discomfort

from bowel extrusion.

TABLE II.-FECAL DATA FOR 32-DAY METABOLIC STUDIES

Study number X XI XII
Number specimens 59 52 - 58
Number of days

between specimens 2.2 2.5 2.2
Dry matter

(g/subject/day) 16.4 20.6 16.0
Fecal moisture

(g/subject/day) 30.7 44.3 31.3
Moisture

(% of specimen) 65.2 68.3 66.2

In considering the human factors area, the present baseline system was found to be highly
reliable but complicated. The time required for manipulation during preparation and eating was
discussed above. In addition, the treatment of residual food to prevent degradation upon storage

was found to be both time consuming and difficult. The antimicrobic agent used to treat the residual
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food is sealed in a separate area of the primary package in the form of a tablet. The removal of
the tablet and its insertion into the used bag has a high fumble potential. Once it was in the bag,
the subjects found the tablet difficult to break into pieces to assure even distribution in the bag.

The design of the zero-G feeder also presented minor safety hazards. Cut material
around the mouthpiece caused occasional cuts on subjects’ lips and fingers. It was also a constant
threat to the eyes; however, no injury of the eyes occurred in these studies.

Another area of consideration is the size and shape of bite-size foods. There are several
different sizes of food bites: 1.1-cm (11/16-in. ) cubes; 0.6- by 2.5~ by 2.5-cm (1/4- by 1- by 1-in.)
bacon squares; 0.9- by 2.1- by 2.8-cm (3/8- by 7/8- by 1 1/8-in.) cinnamon toast; 3.2 cm by 2.5 cm
by 1.6 cm (1 1/4 by 1 by 5/8-in. ) sandwich bites. The subjects had difficulty in placing the larger
bites in the mouth and chewing. The initial crushing of the bite was difficult if the depth of the bite
was greater than 0.5 in. }

The volume of food in the mouth was also important. These foods are dry and require
saliva to rehydrate. A maximum volume of 0.40 cu in. was considered ideal. Some bites such as
the fruitcakes were criticized for being too hard. Using a punch 1 ¢m in diameter closing at the
rate of 10 cm/min, the optimum hardness for bite-size foods is approximately 25 kg/ sq cm.

At the conclusion of these studies, the feeding system was functionally verified. As a
result of these studies, the following changes in the feeding system were made: (I) The re-
hydration container was redesigned in the following manner: A valve was installed with shrinkable
Teflon to hold the valve to the package, the size of the beverage bags was increased, the quality
of materialvs was improved, mouthpieces were widened to provide more convenient removal of
the food, and the antimicrobic tablet was relocated and made smaller; (2) foods were improved
by reducing rehydration times and making the texture more defined and natural; (3) bite sizes
of foods were changed in shape and size and the integrity and hardness improved; and (4) the
nutritional composition of these foods was defined and methods for planning a balanced and accept-

able menu by using a computer program were established.
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DeveLoPMENT OF New CONCEPTS FREDERIC F. DOPPELT

FOR THE FEEDING SYSTEM
For THE USAF United States Air Foree

MANNED ORBITING LABORATORY

During the initial phase of the Manned Orbiting Laboratory (MOL) program, existing
space feeding systems were evaluated for possible use. The time frame of this evaluation was
1965 to 1967, at which time the Gemini flight program was yet to be completed and the Apollo pro-
gram was in its development phases. There was no qualified 30-day feeding system for space
application. With the assistance of the U.S. Army Natick Laboratories, the USAF School of Aero-
space Medicine (SAM), and the NASA Manned Spacecraft Center (MSC), an indepth review was
held.

It was determined that the Gemini/Apollo feeding system would initially be considered for
use on the MOL. It was felt that the greatest advantage could be derived by both MOL and NASA
by concentrating efforts on improving the componentry of the already developed Gemini feeding
system. Through development and expansion of that technology for use on MOL, most of which
would occur during the Apollo flight time frame, mutual benefit could be obtained. The NASA
development efforts in refining the Gemini feeding system for use in Apollo and our efforts in
further expanding these concepts could be interwoven s0 as to benefit both agencies.

Although the history of feeding systems will not be detailed in this paper, it should be
remembered that spaceflight systems were developed along lines stressing a normal progression
of increasing complexity of accomplishment from Mercury to Gemini to Apollo. The unknowns
were great; planning was accomplished in increments; 30-day flights in the days of Mercury,
when space flight was measured in minutes to hours, were but a dream. Nevertheless, an
attempt was constantly made to develop the feeding system as an integral part of the total space
system. It was necessary to conceive of it in terms of the mission, systems capabilities, crew
requirements, etc. It is to the great credit of NASA and all the agencies and contractors that
have supported the efforts to date that the feeding systems development incorporated rational sys-
tems engineering. The application of dehydrated foods, the development of zero-G feeders and
packaging materials, the delineation of nutritional requirements, etc. were no small effort.

The 14-day Gemini 7 flight was up to that date the most significant test in space of
spacecraft systems, crew performance capabilities, and environmental control and life-
support systems, one of which was the feeding system. As has been detailed elsewhere, the

Gemini feeding system was configured to meet certain requirements; heat, vibration, and
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bacteriological criteria, nutritional levels, procedural use requirements, use in the confined com-
partment of the Gemini spacecraft, and utilization of fuel-cell water at its spacecraft temperature
of 80° F were but a few of the environmental criteria.

In August 1967, after industry proposal evaluation, Whirlpool Corp. was selected to de-
velop and produce the MOL Feeding System Assembly. This feeding system was to be composed
of food substances prepared in the form of dehydrated bites which were to be eaten in the desic-
cated state and to be rehydrated during the process and various dehydrated foods and beverages
which were to be rehydrated prior to eating and drinking. There were approximately 40 items
available at that time. The U.S. Army Natick Laboratories supplied ""Space Food Prototype Pro-
duction Guides'' for Whirlpool Corp. to incorporate into production specifications. Hot water to
155° F and cold water to 40° F was to be available for the rehydration. Twenty-six hundred
cal/ man/day was feltat that time to be the caloric requirement. Microbiological standards, as
developed by the U.S. Army Natick Laboratories, were applied. Maximum organoleptic accept-
ability was to be sought.

The food was to be packaged in the Gemini developed zero-G feeders with a mouth spout
and hydration valve arrangement. The feeders would be scissor-opened and the food and liquids
squeezed into the mouth. The bite packages would be scissor-opened and the bites individually re-
moved for eating. Rehydratables and beverages were in 5-oz-capacity bags. Bite-food bags
varied in size. Food volume and weight were limited to 195 cu in. and 1.7 Ib/man/day. An anti-
microbial agent was attached to each rehydratable food package.

Procedural requirements detailed a desire to minimize preparation, feeding, and waste-
disposal times. In order to make efficient use of the items available, a 4-day menu cycle of three
small meals of 10 minutes each and one large meal of 45 minutes was desired. Mineral content
was based on the recommendations of the National Research Council. The caloric distribution was
to be 27 to 34 percent fat, 10 to 15 percent protein, and 50 to 58 percent carbohydrate.

It was felt that, in order to utilize the technical capabilities of SAM, the U.S. Army
Natick Laboratories, and NASA MSC most properly, the MOL Systems Office should set up a
quarterly conference to be attended by all these agencies. This would handle appropriate technical
inputs and these quarterly food planning conferences were held from 1967 to 1969. Their format
has recently been slightly changed so that the MOL Systems Office and NASA MSC are cochairmen
for the Government Agency Food Technology Working Group which held its last meeting at Natick,
Mass., in March 1969. This close working relationship has been singularly effective in integrating
government-agency efforts toward the present and future requirements of the users, MOL and NASA.

During the development phase of the Whirlpool contract the objectives have been validating
this system, developing production specifications, and improving and enlarging the variety of foods.
Dr. Vanderveen, in a preceding paper entitled "Evaluation of Space Feeding Systems, " has detailed
the validation of the feeding system by adding information about the reliability of the zero-G feeders,
delineating the metabolic characteristics of the food, adding to the battery of acceptance data for both
initially considered food items and newly developed items, and improving rehydration information.

Major Flentge, in a paper entitled "Quantifying and Improving Manned Orbiting Laboratory Food,"
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has detailed efforts in developing production specifications and discussed the enlargement of the
food-item list. In particular, more high-nutrient soups and puddings have been added, and the
quality and type of bites have been significantly enlarged and improved.

By August 1968 it was felt that MOL had an acceptable feeding system which could be
used for 30-day flights, but certain problem areas remained, or at least became more obvious.
Since MOL was still in its development phases, an attempt was made to detail these problem areas
and, in the time remaining, to solve them. Additionally, these problems would be common to the
upcoming Apollo flights, and solutions for some of the more readily solvable problem areas could
certainly be of benefit to Apollo. Also, valid flight information would be gathered during the '
Apollo flights and would be beneficial in bringing to light any new problem areas.

It was recognized that more natural foods should be developed - rehydratable meat chunks,
more vegetables, and high-nutrient cold liquids, to name a few. The compressed bites should be
normalized in size so that a bite would be normal to the mouth in both shape and consistency.

Also foods should be utilized in a more usual manner, as dessert items, croutons to be used with
soups, etc., and not be viewed as the main caloric constituent of any one meal. Food-storage
times should be more completely determined and improved so as to give maximum selectability
where flights occur over extended periods of time.

In the area of packaging, it was clear that the delivery system must be improved. The
complexity and unnaturalness associated with the handling of multiple small packages and squeez-
ing the rehydratables and liquids individually was both cumbersome and time consuming. The
advantage of hot and cold water was not completely realized since preparation and rehydration
times were long and the thermal conditioning of the food was certainly degraded because of the
time required from preparation to actual eating. The multiplicity of packages presented a problem
in formulating a normal menu plan. More realistic use of the antimicrobial agent was needed
since significant weight was involved in incorporating a pill in each package, and time was involved
in removing it, placing it in the package, crushing it, etc. Drinking methods were unnatural;
liquids were squeezed into the mouth by rolling up the package like a toothpaste tube. The crew
no longer was cramped into a small cabin, as in Gemini, and could now afford the freedom of
intravehicular movement. For the first time a feeding station would be utilized and, in general,
living would be more normal. The package-to-food ratio was prohibitive and, therefore, not only
costly to booster|capability but severely limited the important flexibility of meal planning. As an
example, 2900 Kcal of food would require the full 195 cu in. of space and 1.7 b alloted and
would contain only 88 cu in. of actual food. Because of the energy requirements and the size of
our crewmen it was recognized that as much as 3200 Kcal/man/day might be required. If two
large crewmen flew at the same time they could not have the required amount of food. Certainly,

food requirements should never be a criterion used for astronaut selection.

Also, of course, crew procedural requirements specified reduction in time and proce-
dures and the development of more flexible meal grouping to offer maximum flexibility to the '

flight timeline people. Additionally, waste handling most certainly needed to be simplified.
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With these areas delineated and with the growing confidence that was acquired during the
Gemini program as to food delivery methods, a prototype package system was developed by Whirl-
pool Corp. This package would allow spoon feeding. With larger spacecraft volumes available and
more known about the handling of foods in zero gravity, this old technology of eating with a spoon,
which had been, naturally, considered by many groups previously both within industry and NASA,
could become a reality. This concept was evaluated by MOL in a zero-G flight test run at Wright-
Patterson Air Force Base in August 1968.

The test revealed that the method was indeed feasible. Food substances adhere well to
the package, spoon, etc. Eating is simple and rapid. Simpler flexible hydration valves were
evaluated and proved feasible. The entire eating process proved to be a more natural one; food
packages could be lined up on the console and food spooned from each package with ease. The
package remained open and food residue could be wiped off the spoon in the scooping process on
the opening band. Foods could be mixed as when eating at the table. The food itself could be seen
and the quantities desired placed in the mouth. This concept was immediately and successfully in-
corporated in the wetpack Christmas dinner eaten on Apollo 8 and more completely incorporated
on Apollo 9.

I would like to point out the great value that direct participation by our crewmen has been
throughout the MOL Food System Development Program. As an example of this, in January 1969,
four crewmen were fed a complete menu cycle for a period of 4 days. They devoted themselves
to the task of constructive evaluation of the food and commented on each food as it was eaten, as
an individual item, as part of the meal itself, as part of the day's menu, and, finally, as part of
the complete menu cycle itself. Their comments have been directly incorporated into the food
design. As a part of the test, daily complete dental examinations were carried out by Drs. Hall
and Brown of SAM, who were able to gather Important information which has helped us to de-
termine compressed bite size and texture more rationally. The crewmembers learned the im-
portance of diet understanding in selecting foods. In order to have at least two crewmen evaluate
each item at least once, a caloric intake of from 2800 to 3400 cal/day was required. The crewmen
remained active and exercised daily. Their daily energy requirements, however, were judged to
be close to those anticipated in orbit. It is of interest to note that all either retained their starting
weights or gained weight. All the weight gains could be attributed to too high a caloric intake
based on our estimates of 42 Kcal/Kg LBM/man/day.

With the concept of spoon feeding proven to be feasible, the next rational step was taken.
A complete systems engineering analysis was undertaken by Whirlpool so as to redesign the MOL
feeding system to incorporate this concept and its many possible ramifications, the details of
which are discussed by Dr. Rotl: ... his paper "'Systems Analysis of Manned Orbiting Laboratory
Feeding System."

Iwould, however, like to state some of the objectives of redefining the food delivery sys-
tem and its overall impact on the total feeding system. It must be constantly kept in mind that in
cases where system design time is available, maximum benefit can be derived from incorporating

new concepts into existing systems if an integrated review of requirements and objectives is
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undertaken. Therefore, Whirlpool Corp. was directed to do a complete tradeoff analysis as part

of this study. This required detailed objectives and requirements delineation and prioritization.

Food storage dimensions became a prime factor and nutrient modularization and dimensional modu-

sity. Normal eating and drinking methods, rational combinations of
realistic uses of anti-

larization became a neces
foods, minimization of time, more appropriate package-opening techniques,

microbials, simpler waste stowage, decreasing the number of packages involved, normalization

of compressed bites, increasing the volume of each liquid, decreasing the size of the puddings,
enlarging the capability to carry 3200 Cal/man/day if required, retention of thermal heating and
cooling of the food till eaten - all became important factors. Additionally, flexibility to incorporate
newer food types, such as meat chunks and high-nutrient cold liqu
It is, therefore, recognized that food acceptability involves not only the quality of the

food itself and its variety but also the time and convenience of preparing and eating, size of por-
tions, stowage, etc. The MOL Systems Office has recently evaluated this new feeding systems
approach and feels it now offers maximum use of foods and packaging, more convenience, and,
therefore, total acceptability. It also offers maximum flexibility for planning purposes and allows

for in-orbit ease of readjustment if required.
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SYSTEMS ANALYSIS NORMAN G. ROTH

oF MANNED ORBITING LABORATORY
Whirlpool Corporation

FEEDING SYSTEM

The purpose of my discussion is to present the systems-analysis approach which Whirlpool
Corp. is using to attempt to improve the overall feeding system for the Manned Orbiting Laboratory
(MOL) program. It is my hope that this discussion will facilitate understanding of the problem of
feeding man in a spacecraft in light of a total spacecraft system rather than by a shotgun approach
of developing individual improved food items or hardware components. In my opinion, which is
based on years of experience as a contractor on both the Gemini and Apollo feeding programs, a
shotgun approach will do little to advance the overall state of the art.

As mentioned in other papers, the MOL baseline system emerged in the contract as an
exact replica of the late Gemini feeding system, insofar as packaging and food items were con-
cerned. The MOL system allocated a total storage volume per day for each astronaut's food of
approximately 195 cu in. for a baseline menu of 2900-Kcal, The average volume of the dehydrated
food in this 2900-Kcal menu was only 88 cu in. However, because of packaging and food-shape
inefficiencies in this baseline system, this 88 cu in. of food, when oriented as efficiently as pos-
sible, completely filled the allocated available volume of 195 cu in.

Some of the packaging inefficiencies were related to shapes of foods used in the menu
and others, to the nature of valves and other irregular components used in the package. The 195
cu in. of storage volume allocated per man day of food in MOL was in a theoretically very efficient
"shoe box'" shape of 3.7 by 6.3 by 8.3 in. However, with the baseline system, this storage space
could not be efficiently utilized.

Figﬁre 1 shows the dimensions of the current Apollo bite-size foods. These fairly regular
foods form no regular pattern when attempts are made to package them together. The rehydratable
foods presented an even more difficult problem to the systems integrator. First, the package in-
corporated a hard poppit-type water entrance valve and a hard waste-stabilization tablet which
defied all attempts at efficient stowage and tended to crush bite-size foods in intimate contact.
Second, the shapes and sizes of the rehydratable foods were purely arbitrary. The rehydratable
foods acquired their current dimensions from the original development work, which was carried
out by using Spam cans as molds for freezing experimental products prior to drying. These cans
were inexpensive and handy for producing experimental samples. However, the arbitrary dimen-
sions did not relate to any specific requirement of the feeding system. In general, a bar, the size
of a Spam can and 1 in. thick, was not a satisfactory serving portion, nor was it dimensionally an
integral factor of any available storage volume. The dimensions used in the baseline system were
of no value from either the engineering or nutritional standpoint; they were merely a carryover

from early development work. 43
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Figure 1. -Dimensions of current Apollo bite-size foods. Dimensions are in inches.

The baseline MOL foods were acceptable from both the nutritional and organoleptic stand-
point if properly used, but under actual previous system application they left something to be de-
sired. Considerable data presented by previous speakers attest to the fundamental acceptability of
the foods. VOur task at Whirlpool was to perform a systems analysis which could lead to an overall
acceptable feeding system under actual spacecraft conditions. The remainder of this paper will be
concerned with the nature of this systems analysis and the basic conclusions.
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First, let us look at the interface charts (figs. 2 and 3) so that we can understand all that

'is involved in the system. At the center of the chart is a typical rehydratable food package. The

broken lines are not within the scope of the feeding-system contract, but they are shown because
they serve to describe the total system. After this look at the overall system, the analysis was

undertaken.
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Overall goals, in brief, from the food standpoint were to:

(1) Optimize baseline foods to provide satisfactory serving or portion sizes.

(2) Provide nutritional modularization, so that a serving of a given class of food would
provide about the same nutritional content as any other serving of another food of the same class.
(For example, all meat items should be nutritionally interchangeable.)

Overall goals, in brief, from the packaging standpbint were to:

(1) Make all food packages modular, the size being based on the fixed dimensions of the
spacecraft compartment. In order to do this, and still to allow for the nutritional modularity,
packages and contained food should have strictly fixed dimensions in two dimensions, with the third
dimension variable to allow for weight adjustments of individual food items.

(2) Eliminate inefficient protuberances such as hard valves and disinfectant tablets.

(3) Allow for normal and efficient spoon-and-bowl-type eating.

(4) Provide efficient modularization Vof all types of foods, including rehydratables, bites,
and beverages, with maximum interchangeability.

These were the basic goals. However, many other constraints were imposed by the
system. These included:

(1) System integrity, i.e., minimization of loss of food to the atmosphere
(2) Identification of all foods and meals

(3) Accessibility of all foods

(4) Efficient food-waste handling

(5) Ability to open and close a package easily

(6) Ability to add water to rehydratable foods easily and reliably

(7) Containment in a ration pack

(8) Compatibility with all normal and emergency spacecraft environments
(9) Overall safety

(10) Overall noncomplexity

(11) Anthropometric compatibility
The foregoing criteria are illustrative, but certainly not all inclusive.

The study began with an analysis of the nutritional and dietetic aspects. The initial objec-
tive was to modify food portions to reflect normal portion sizes. This was done by using standard
military and institutional food-portion recommendations as a guide. Generally, this modification
resulted in increasing the portion size of "main dish" food items and decreasing the portion sizes
of dessert items. It also resulted in a decrease in total number of food packages required per man
day from an average of 22 to a maximum of 16.

Table I shows a comparison of portion sizes in the current menus with those in the recom-
mended modified menus; the values are based on use of normal portion sizes. Generally, it can be
noted that the portion size of meat- and soup-type foods increases and that of dessert-type foods
decreases. This in itself should help to eliminate some of the valid complaints of too many sweets

in the menu.
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TABLE L. ~-COMPARISON OF DRY PORTION WEIGHTS AND VOLUMES

Current MOL

Modified MOL

Food item portion sizes portion sizes
Weight, Volume, Weight, Volume,
B cu in. E cu in.
Cereals
Sugar-coated corn flakes. . . ....... 36.8 5.63 42.9 6.57
Toasted oatcereal .............. 24.0 9.24 36.0 13.87
Fruits
Applesauce . . .. .o v it 35.0 6.99 20.0 3.99
Fruit cocktail . ................ 21.0 7.25 21.0 7.25
Peaches . .. ... i i i i i 19.0 7.25 22,2 8.47
Vegetables
Cream-stylecorn ............ Ve 22.5 7.25 22.5 7.25
Puddings
Apricot. . . . . ... h i e e e 70.0 5.94 40.8 3.46
Banana .- .« v v ot v v v vnnaan . 70.0 5.24 40.8 3.06
Butterscotch . . ... .. [ 70.0 5.93 52.5 4.45
Chocolate . . .................. 70.0 5.51 52.5 4.13
Salads
Chicken . ......... ... ... v... 41.0 6. 80 41.0 6.80
Salmom. . ... v it e 42.0 6.80 42.0 6.80
¢ 42.0 6.80 42.0 6. 80
Shrimp cocktail . . . ... ... .. ..... 31.0 6. 80 20.7 4.54
Meats
Beefandgravy................. 35.0 6. 80 46.7 9.07
Beefhash .................... 29.0 6. 80 58.0 13.59
Beefpotroast................. 27.0 6.80 45.0 11.33
Beef with vegetables, . ........... 22.0 6. 80 58.7 18.14
Spaghetti with meat. . . . .......... 21.0 6. 80 56.0 18.12
Veal in barbecue sauce . . ......... 38.0 6. 80 63.3 11.32
Canadian bacon and applesauce . . . ... 29.0 6. 80 58.0 13.59
Sausage patties .. .............. 40.0 5.80 40.0 5.80
Chickenandgravy. . . ... ......... 24.5 6. 80 40.8 11.32
Soups
Cheese. . ......viveivenernnnn 46.0 8.81 69.0 13.22
Cream of chicken. .............. 27.5 1.88 38.5 2.57
Cream of mushroom.......... . 30.0 6.59 52.5 11.53
Creamoftomato ............. . 35.0 5.19 49.0 7.26
Lobster bisque, . . .............. 39.0 7.46 54.6 10.44
Pea - - . oo i i i e e 49.0 6.10 58.8 7.32
Potato .. ........ ... e, 40.0 4.42 56.0 6.19
Beverages
COCOA. + + v v vttt e 42.0 3.56 58.8 4.98
--- -— 84.0 7.12
- 8.2 .56 13.1 .84
--- - -- 19.7 1.27
Drinks
Fruit drinks ~class1............ 21.0 1.37 31.5 2.5
--- --- 37.8 2.46
Fruit drinks -class4............ 39.0 2.52 54.6 3.52
--- --- 66.3 4.28
Grapefruit drink -class 4. ........ 46.0 2.89 64.4 4.05
) --- --- 78.2 4.92




After analysis of the food modularization, the next step was to perform a dimensional
modularization, to determine optimum utilization of the available stowage space. The nutritional
study indicated that a maximum of 16 packages per day, distributed as shown in table II, could meet
the MOL requirements. Volume requirements for this distribution were determined to be as shown in
table III.

TABLE II.-DETERMINATION OF MODULAR INCREMENTS

Modular
Type of food Portions per Volume increments
ration factor per ration
Rehydratable 4 i 28
Liquid 4 5 20
Bite 8 2 16
64

TABLE III. ~-FOOD AND PACKAGE VOLUME ASSUMPTIONS

Average food Maximum food
Type of food Aversgefood | andpuciage | and package
cu in. cu in. cu in.
Rehydratable 8.0 14 1 9
Liquid 3.5 10 11
Bite 3.5 4 5

The first engineering task was to determine the optimum modular shape for the foed pack-
ages. Spacecraft interface constraints dictated that the ration (defined as food for 1 man for 1 day)
fit within the dimensions shown in figure 4. There are obviously many possible dimensions for 16
packages within this overall dimensional limit. The first tradeoff study was performed to select
the best dimension for individual food packages within this system.

Figure 5 shows a few of the possible configurations studied. (In these sketches, the first
number indicates width and the second indicates height; e.g., 2 by 1 is 2 packages wide by 1 pack-
age high.) All configurations from 1 by 1 through 10 by 1 were examined; configurations over 11
were considered not feasible.

Tradeoff factors used in the study were:

(1) Package access
(2) Availability of space for mounting rehydration aperture
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(3) Compatibility with hot-water-probe enclosure
(4) Anthropometric compatibility
(5) Maximum package depth
(6) Bite cross section
(7) Number of bites per modular face
(8) Minimum acceptable bite volume
(9) Maximum acceptable bite volume
(10) Flexibility of bite serving volume
(11) Permissible serving sizes as function of thickness

3. 7-in. Ration
Height Pack /
J 8. 3-1n,
Depth

le—— 6.3-in. >
Width

Figure 4. -MOL feeding system assembly.

All factors were assigned numerical ratings in the tradeoff study. In addition, go-no-go numbers
were assigned, and any single no-go configuration eliminated a particular dimension. I cannot go
into the total mathematics, but I would like to present one example. Figure 6 illustrates a fixed
spacecraft system constraint, the hot-water-probe cavity dimensions. Any package dimension
which does not permit access to the hot-water probe for rehydration obviously would be discarded
from further consideration.

After a thorough systems analysis, which can only be mentioned here, the 5 by 1 dimen-~
sion was selected as optimum for modularization of the MOL food packages. This resulted in a
package dimension for all foods, bites, rehydratables, and beverages, as shown in figure 7. In
order to make the system work most efficiently, a loose fill of rehydratable foods, rather than
use of formed bars, was most desirable. With a variable length dimension, loose fill would allow
for nutritional modularity between foods and for ease in adjusting portion sizes of a given menu
for individual men of different body sizes and, therefore, different calorie intake requirements.
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Figure 5. -Some food-package configurations studied. 51
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Figure 6. -Hot-water-probe cavity dimensions.
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Table IV shows, with samples of Apollo foods, that loose-fill foods (after vacuum packaging) re-
quire no more volume than formed bars. The modular packaging requirement also dictated a change
in shape of the bites from shapes previously shown to wafers about L in. thick by slightly over

1 in. square. Fortunately, this shape is in general agreement with Air Force dental research
results on optimum size of bites.

TABLE IV. ~-COMPARISON OF FORMED AND PARTICULATE FOOD VOLUMES

Food item Guide weight, g Volume, cu In.
Formed bar Loose fill Vacuum packed

Shrimp cocktail 31 5.015 7.811 4.771
5.381 8. 665 5.259

4.832 7.444 4.710

5.320 7.933 5.137

Beef and vegetables 22 4.893 7.872 4.710
4.893 7.811 4.710

4.893 7.689 4.771

Spaghetti and meat 21 4,527 8.177 4.283
sauce 4.832 8.238 4.527
4.771 8. 055 4.466

4.893 8.482 4.527

Chicken and 21 5.137 9.031 5.747
vegetables 5.137 8.299 5.442
5.259 8. 665 5.564

5.259 8. 909 5.625

After selection of dimensions of the modular packages, similar systems tradeoff studies
were performed to establish the basis for package designs. In the case of the rehydratable package,
separate tradeoff studies were first performed by selecting the rehydration aperture and package-
closure concepts. The rehydration aperture concepts included:

(1) Maximum diameter

(2) Maximum length

(3) Requirement for adapter to mate with water probes
(4) Self-closing feature

(5) Reliability

(6) Potential for leakage around probes

(7) Potential for leakage during kneading
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(8) Feasibility
(9) Valve-food interference
(10) Material requirements
(11) Tooling requirements
The package-closure concepts included:
(1) Compatibility with package face
(2) Capability to be folded over end of package
(3) Cross section of opening
(4) Tendency to be soiled by food removal
(5) Simplicity of operation
(6) Capability to be opened with one hand (on console)
(7) Capability to be opened with one hand (hand held)
The selected concepts were then used in developing the overall rehydratable package concept.
Beverage and bite-size package studies were performed in a similar manner.
The tradeoff factors utilized in selecting the most feasible rehydratable food package con-
cepts were functional factors, system factors, and program factors. The functional factors were:
(1) Manipulation
(a) Insertion of water probes
(b) Rehydration
{c) Opening and reclosure
(2) Temperature maintenance
(3) Rehydration aperture
(4) Access to food
(5) Compatibility with unpressurized gloves
(6) Total operation time requirements
The system factors were:
(1) Weight
(2) Volume
(3) Reliability
The program factors were:
(1) Schedule (time to qualification)
(2) Unit cost
(3) Tooling cost
The tradeoff factors utilized in selecting the most feasible beverage package concepts were
the same three factors. The functional factors were:
(1) Manipulation
(a) Initial seal opening
(b) Insertion and removal of clamp @f any)
(c) Insertion and removal of straw (if any)
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(2) Rehydration aperture

(3) Terminal seal

(4) Safety (protruding tabs)

(5) Ease of microbiological stabilization
The system factors were:

(1) Weight

(2) Volume

(3) Reliability
The program factors were:

(1) Schedule (time to qualification)

(2) Unit cost

(3) Tooling cost

The same tradeoff factors were utilized in selecting the most feasible bite package concepts.
The functional factors were:

(1) Manipulation

(a) Insertion of accessory devices (if any)
(b) Opening and reclosure

(2) Cube retention

(3) Crumb retention
The system factors were:

(1) Weight

(2) Volume

(3) Reliability
The program factors were:

(1) Schedule {time to qualification)

(2) Unit cost

(3) Tooling cost

As I hope you can gather from the foregoing discussion, a thorough systems analysis and
tradeoff study has been performed on the MOL feeding system. Preliminary design concepts have
been evolved for a new baseline feeding system. These design concepts have been thoroughly in-
tegrated with the total spacecraft requirements and have met the basic goals of the study. Packag-
ing efficiency of the ration has been improved, and flexibility of food portions usable within the
ration has been greatly increased. Design concepts for packaging rehydratable foods, beverages,
and bite-size foods have been developed. These design concepts are completely modular and pro-
vide for eating in a manner much as one does on Earth. Rehydratable foods are consumed with a
spoon; beverages, through a straw. Design concepts for the foods provide for greater flexibility
and improved anthropometric compatibility.

During the progress of the systems analysis, no attempt was made to establish detail design
of the packages or radical changes in food production techniques. The systems engineers have set
the ground rules. On the basis of the systems analysis, the designers and food technologists can
now start the specific developments leading to provision of all the components as a complete inte-

grated system. 55






APoLLO APPLICATIONS PAUL C. RAMBAUT
PrRoGRAM REQUIREMENTS NASA Manned Spacecraft Center

Most of you are probably familiar with the Apollo Applications Program (AAP), the NASA
mission which will succeed Apollo. The Apollo Applications concept has had a long history. How-
ever, it is only recently that its configuration has been more or less solidified.

The AAP is based largely upon the use of currently available hardware. A three-man
space station will be assembled in orbié about 200 n. mi. above the Earth. This space station, or
orbital assembly, will consist of a command and service module, a multiple docking adapter, and
an orbital workshop. The orbital workshop is the true essence of AAP. Tt is actually the spent
hydrogen fuel tank of the second stage, or SIVB stage, of the Saturn IB rocket.

Three AAP missions will be flown over a period of about 9 months. The first mission
will be 28 days long and the other two will each be 56 days. The second 56-day mission will have
an Apollo telescope mount added to the orbital assembly. All missions will employ the same SIVB
tank, which will be left in orbit ina deactivated state between missions. The first two AAP flights
are primarily medical missions, whereas the third has an astronomy objective.

The food system to be used on AAP will be substantially different from that used on
Mercury, Gemini, Apollo, or MOL. This does not stem from a desire on our part to make things
different simply for the sake of flying a novel system; in reality there is substantial pressure to
utilize existing Apollo hardware, wherever practicable. The requirement that the AAP feeding
gystem be different stems from two major factors: (1) Some flight foods used in the past are not
satisfactory from a number of standpoints so there is a pressing requirement to achieve a better
system, and (2) the requirements imposed upon the flight feeding system by the AAP mission
profile are much more stringent than the requirements placed upon any previous flight feeding
system. This is not because of more rigorous conditions, for indeed storage conditions will be
better, but is rather because of a need to make a food system as good as a good conventional food
gource, yet also to allow for the conducting of a medical experiment.

The feeding system will be one which will meet a set of requirements which we consider
reasonable in the light of the objectives of the AAP missions as well as of the constraints that the
spacecraft will impose upon the foods and packages.

Two primary objectives of the AAP missions profoundly influence the design of the feed-
ing system. First, there is an experiment on habitability, which is designated M487. Certain
criteria which make a habitable environment are postulated in this experiment. The experiment
provides the equipment inside the SIVB which will put this hypothesis to the test. The habitability
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of any environment is in large part a function of its food supply. It is the intent of M487 to make
absolutely certain that there is nothing about the food system or any other system which will un-
necessarily detract from habitability.

The AAP feeding system is one of the most critical elements of the overall life-support
system of the AAP orbital assembly. Proper food consumption is essential for sustaining the
health and performance of the astronauts. The quality of the food and the ease with which it may
be prepared and consumed will have a profound effect upon the general psychological, as well as
the physiological, well-being of the crew. Food which may be nourishing but which is not highly
palatable and which is difficult to prepare and consume may adversely affect the morale and per-
formance of the astronauts and will be incompletely consumed.

A second prime objective of AAP is to obtain medical data. A large complement of medi-
cal experimentation will be implemented on AAP in order to assess the effect of spaceflight upon
the human and to gather predictive data regarding his ability to withstand weightless spaceflight of
very prolonged duration. One part of this experimental package is designed to assess the effect
of spaceflight upon musculoskeletal function. The core of the experiment is essentially a very
precisely performed balance study, which is designated M070. Such a balance necessarily depends
upon very accurate knowledge of the input and output of major metabolites.

The food must be sufficiently well defined that this knowledge of nutrient intake may be
derived from minimal inflight data which will be recorded during the course of the experiment.
The crew will adhere to a prearranged or nominal menu plan chosen by the principal investigator
in advance. There will be available the crewman's daily log of items left unconsumed or of items
consumed in a sequence which differs from the nominal menu. We will have an inflight logged re-
cording and voice transmission regarding any residual, partially consumed food :tem which con-
tains more than 1 percent of the original mass of food. Since these inflight mass measurements
impose a burden on the crew, it is highly desirable that the food package be graduated in a manner
which will allow a visual estimation of food mass remaining without mass measurement. As addi-
tional data, we will have assurance that the water content of any rehydratable food item will not
differ from that preséribed by the instructions on the package.

We also propose to place on the AAP feeding system a number of nutritional require-
ments. It is essential that the recommended dietary allowances of all vitamins, minerals, essen-
tial fatty acids, and amino acids be met or exceeded by the nominal menu when completely con-
sumed by the crew. The diet will be so designed that each crewman will consume each day about
800 mg of calcium. This might be accomplished either by distributing the calcium evenly in a
constant calcium-to-calorie ratio throughout the food or by incorporating the calcium in items
which the crewmember is most likely to consume first. Dietary phosphorus will be controlled in
a similar manner.

The food flavor, texture, and appearance will be varied to obtain complete consumption.
For purposes of designing the AAP feeding system, complete consumption will be considered the
governing criterion for any increase or decrease in food variety. Complete consumption will en-
sure that the nutritional requirements of the crew are met as efficiently as possible without food
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waste. Menus and food items will be varied in moisture content, flavor, texture, nutrient composi-
tion, and particle size in a manner which will ensure complete consumption. We would like to avoid
unnecessary variety. Consideration will be given to a modular food concept which will consist of a
few basic items which can be manipulated to provide the necessary variety in flavor, texture, mois-
ture, particle size, ete.

The balance experiment will impose a requirement for as much homogeneity as possible.
Ideally, rehydratable foods will be homogenous to the extent that any 1-percent sample of any food
in a particular package will constitute a representative sample of that food. This requirement will
apply to the food both in wet and dry state. Therefore rehydration of food items must take place
completely and uniformly.

All food items to be included in the AAP menus will be of known chemical composition.
The permissible variance in the nutrient composition of any food item will depend upon the number
of items fed, but it must be low enough to be compatible with an overall requirement to ascertain
the intake of each nutrient over a 56-day period to within 1 percent.

The food will be packaged in a manner which will facilitate complete consumption. At
least 99 percent of the contents of any food package must be readily available to the crewman. As
all food residue exceeding 1 percent of the original content of a package must be weighed or other-
wise estimated, the foods must be packaged in a manner which will encourage complete consump-
tion.

In order to adhere to the nutritional and experimental requirements of M070 and yet
allow flexibility in the choice of the crew's menu items, consideration will be given to means of
manipulating the food supply as the flight progresses. Computer programs will be developed
which will generate menu choices within the required experimental envelope on the basis of food
reported consumed and food known to remain.

I have just gone through a lot of requirements which seem largely to arise from the effort
to conduct an inflight metabolic experiment. However, the primary requirement is to provide a
feeding system which meets the demands of habitability. If there are experimental requirements
that turn out to be obviously incompatible with the provision of a palatable flight menu, those re-
quirements will not be imposed.

Now that we have levied numerous nutritional and experimental requirements on the feed-
ing system, we must consider the type of environment in which these foods will be expected to
function. The food must, of course, withstand the rigors of a launch with its associated stresses.
The foods and food packages which constitute the feeding system of which I speak will be launched
in three different sorts of vehicles; the Command Module, the Multiple Docking Adapter, and the
Apollo Telescope Mount. The containers in which the food will be stowed will maintain a nitrogen
pressure upon the food packages of at least 1 psi. Temperature will be maintained between 40°
and 85° F. The food must be able to withstand these conditions, at their extremes, and allow
variation thereof for a period of at least 8 months.

The weight allowance for food and flexible packaging will be generous in that it will permit
the provision of at least double the caloric needs of the crew in the form of dry food. The packages
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employed to protect the food will constitute only 10 to 12 percent of the weight of the food plus
packaging.

The choice of the kinds of food is made considerably more flexible by the probable avail-
ability of a food-heating device such as a microwave oven and a food-cooling device (to 40° F).
There will be a food-management area within the SIVB which will provide many of the amenities
of a conventional eating location.

I have outlined the requirements of an AAP flight feeding system. These requirements
will hopefully elicit solutions which are both imaginative and amenable to rapid implementation.
I might reflect that much has been said of experimental requirements and of the supposed in-
compatibility of the two experimental sets which will be flown on AAP, i.e., habitability and
medicine. AAP is, Ilike to believe, a precursor of much greater things to come. Before we
progress to these future enterprises it is essential to glean all information possible from the
opportunity which AAP will present. All experiments carried on AAP are of importance in this
regard. We shall not compromise one for the other, but we shall optimize the quantity of in-
formation we obtain which will allow humans to endure mission profiles as removed from AAP

as Apollo is from our first furtive orbital ventures.
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OPERATIONAL-EXPERIENCE J. D. BLOOM

Foop SERVICE ] ]
Submarine Medical Research

ON NUCLEAR SUBMARINES Laboratory

It is timely that a medical officer speak to you about operational experience in food service
aboard nuclear submarines. In the past, primarily by reason of their lack of senority, medical
officers were commonly introduced to the romance of the submarine with collateral duties of com-
missary officers.

Menu selection is a relatively easy matter. Guidelines are provided by the Navy recipe
service. Variety is assisted by recognition of national holidays, birthdays, and minority group
specialty dishes. There are relatively wide latitudes of flexibility in provisioning to take care of
tastes of the various crews. Use of ration dense foods is encouraged.

Equipment is similar to that of any ship or galley charged with serving 100 to 150 per-
sons. Space is minimal for food preparation, so special effort toward advanced planning is re-
quired. Particular attention is taken in food preparation to prevent prolonged standing of creamed
items and to assure sufficient core cooking of poultry to eliminate bacterial contamination. All
heating devices are electrically powered and special efforts must be taken to prohibit possibly
toxic material from coming in contact with heat sources. Examples would include mercury thermo-
stats and avoidance of Teflon in direct contact with heating elements. Cooking odors are exhausted
through vents containing appropriate grease traps.

Food storage facilities include chill and freeze boxes and dry-storage areas. The re-
frigerant used is freon. Leaks of refrigerant are a potential source of halogenated hydrocarbon
air contamination. Frequent and careful atmosphére monitoring is required.

Water is a relatively minor problem with the abundant power and still capability avail-
able. The major consumption of water is by equipmient (reactor and storage batteries). Special
care is taken not to distill water in polluted harbors. During in-port periods appropriate bacterial
examination of potable-water storage tanks are made.

Liquid waste is discharged through the sanitary tank system. Solid wastes and debris are
placed in synthetic bags, weighted, and discharged through a garbage ejector.

Any one of these items could be a subject of a lengthy discussion. Many of the problems
and solutions have no relevance to the space mission. It is quite clear, however, that man,
whether in outer or inner space, must eat and that failure to consider carefully all aspects of

this need can have a profound influence on the completion of the mission.
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PsycHOLOGICAL EFFECTS OF CHARLES F. GELL

SUBSTANTIAL AND APPETIZING MENUS
Submarine Medical Research

FOR SUBMARINE PERSONNEL Laboratory

Comparing the feeding capabilities of a modern submarine with those of a projected space-
ship is, to a large degree, like comparing a good-sized restaurant with a standup coffee shop. At
this stage of development there is little to invite comparison other than that in both the submarine
and the space vehicle there are men confined who display the usual human trait of enjoying good
food and being unhappy if their food is unpalatable.

In the Navy ships are described as "taut ships, " "happy ships, " and "good-feeding ships. "
Needless to say, a happy ship is also a good-feeding ship because, as we all know, food tastefully
prepared and in comparative abundance is quite a morale factor insofar as all military men are
concerned whether ashore or afloat.

The modern submarine has rather complete hotel facilities, which include a kitchen, a
fresh meat freezer, an ice cream machine, a bakery with bakery goods available daily, sufficient
storeroom space to carry large amounts of food stores, relatively adequate dining space, and
even background music. The ship's cooks have the French chef attitude; that is, they try to titil-
late and stimulate the appetites of the crew. When we compare this with the present day spaceship
and its inconveniences, plus the disadvantages that the weightless state imposes on the eating
process for the astronauts, we have a rather weighted case for the submarine, which will require
many years of further development of spaceship technological engineering to equalize.

Some reports of the feeding habits of submariners have been rather disquieting. Two
reports, one as early as 1949, and one in 1951, said that submariners were great between-meal
snackers and that their diet was largely carbohydrate with a great preference for sweets. These
reports were not supported by data, and, in fact, were merely narrative observations of profes-
sional men riding in submarines on a temporary basis.

Although, given an open icebox 24 hours a day, there is a great tendency for fat boys to
get fatter, certain feeding patterns appear to modify the feeding format of the average submarine
sailor. As an example, while a submarine is a relatively large vessel, the cubic space for each
man is definitely limited. The space for a man is 5 cu yd on an FBM type and only 2cuydona
fleet type. This relatively constricted space can very well affect the individual's physical exer-
cise habits significantly so as to reduce his energy output, and in turn, reduce food requirements.
A relatively old study conducted in 1949 which used oxygen consumption as an index of calorie re-

quirements reported that 2400 calories per man was needed during a temperate-zone cruise ina
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fleet-type submarine. Shulte in 1951 (ref. 1) reported from the Submarine Medical Research
Laboratory that an Arctic cruise of 42 days and a complement of 80 men utilized 4480 cal/man/day.
Actually, a 5200 calorie equivalent per man of food had been provided. The average weight gain
per man was 3 pound.

Another factor that could have some influence in modifying eating habits on a submarine
is the shifts in carbon dioxide concentration. Carbon dioxide tends to build up in a submarine be-
tween air scrubbings. There are some 200 particulate substances in the air which, with the day-
to-day slight pressure variations 'of the various gaseous substances, may have some unknown
effects upon appetite and food preferences.

Still another factor that may affect food intake by the individual is that in submarines the
olefactory stimulus is relatively high. The difference threshold (JND, "just noticeable difference')
is correspondingly high so that it takes a "wallop of odor" for the submariner to say, "I smell
something. " The odors of stale cigars or freshly peeled onions are not ordinarily noticed because
the denominator of Weber's fraction is so high:

Delta I _ (Noticeable increment)
I (Absolute level of smell)
An interesting research area that has not been fully exploited is, what effect does the high absolute
olefactory stimulus level have upon gustation in view of the intrinsic relationship of the two sen-

sory modalities ?
PSYCHOLOGICAL RELEVANCE OF FOOD

When asked why they volunteered for submarine service, 221 enlisted men gave the follow-
ing reasons (ref. 2): Identification with a better class of men, 80 percent; extra pay, 61 percent;
good food, 34 percent; educational opportunities, 25 percent; and thrills and excitement, 24 percent.
Data pertaining to the prevailing beliefs and opinions related to food have been collected. For ex-
ample, the response distributions of 185 officers and 256 enlisted men to the statement, ' believe
the chow the submariners eat is the best you'll find anywhere in the Navy, " indicated that 85 percent
of the officer sample and 90 percent of the enlisted sample responded "true" (ref. 3). Along simi-
lar lines, when enlisted men who were qualified submariners and those who failed to qualify were
asked what aspects of submarine life they most liked, the percentage distributions listed in table I
resulted (see ref. 4). (The number of responders is indicated by f.) It can be seen in table I that
the fifth most frequently mentioned "most liked" aspect of submarine life was the food served
aboard the submarine. It should be noted that a larger portion of the sample of 175 men who were
disqualified or failed to qualify for any number of reasons indicated that the food was a "much liked"
aspect of submarine life than of the sample of 186 men who qualified.
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TABLE I. -ASPECTS OF SUBMARINE LIFE REPORTED AS
MOST LIKED BY QUALIFIED AND DISQUALIFIED SUBJECTS

Qualified Disqualified
Most-liked aspect group group
f % f %
Close interpersonal relations 49 26 32 18
High-caliber personnel 27 15 34 19
Good duty 27 14 15 9
Money 26 14 17 10
Food 13 7 22 13
Friendship 8 4 14 8
Travel and adventure 5 3 5
Working conditions 4 2 5
Operations 4 2 8 5
Morale 7 4 1 1
Other things 16 9 15 9
Total 186 175
Chi square 18.52
p (9 df)2 < 0.05

2 Since one of the expected values for morale was less than 5, the last two

categories were combined, leaving 9 df.

FOOD PREFERENCES OF SUBMARINERS
Amounts and Kinds of Foods Consumed

The laws of physics relating the submarine's buoyancy to its mass and volume require that
approximations of the expected consumption rate of foods of various weights be available prior to a
long-submerged cruise. Examples of data of this kind are available. For example, in an older,
diesel-powered Guppy II type submarine during a 42-day patrol, 87 men consumed 3547 Ib of meat
(21 percent of total), 6219 1b of vegetables (38 percent), 2137 Ib of cereal (13 percent), 1132 Ib of
dairy products (7 percent), 943 1b of fruit (6 percent), 1038 Ib of sweets (6 percent), 445 1b of
legumes (3 percent), 356 1b of fatty foods (2 percent), and 726 1b of miscellaneous food products
(4 percent). Although total food-consumption data from modern nuclear submarines are not avail-
able, on the 85-day submerged world circumnavigation of the Triton, the 225 officers, enlisted
men, and civilian scientists consumed most of the 38 tons of provisions, including 1300 1b of coffee,
10 tons of meat, 935 1Ib of ice cream mix, 460 Ib of cake mix, and lesser amounts of canned vege-

tables, bread, and so on.
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Changes in Appetite and Food Preferences During Prolonged
Submerged Cruises

Reference 5 contains individual subjective estimates of the daily food consumption of a
random sample of the Nautilus crew during a 2-week submerged cruise. From the plots of averages
for this sample of 30 men it appears that food consumption remained relatively constant although
there was a great deal of individual variability within the group from day to day as the cruise pro-
gressed.

In the decade since 1959, more than 40 Fleet Ballistic Submarines (FBM's) have been
commissioned. Manned by two crews of approximately 125 officers and enlisted men, this class of
submarines has become the central focus for a great deal of research, including appetite and di-
etary reséarch. Therefore, the rest of the paper will present data collected from FBM's during
protracted submerged cruises in excess of 50 days.

When a dietary study was conducted on board the USS Nathan Hale (SSBN623) during one
patrol, 50 enlisted volunteers provided data concerning daily food intake, daily meal and snack
distributions, weekly appetite changes, weekly food preferences, pure taste thresholds and body
welght values. These data (abstracted and slightly modified from ref. 6) are given in table II.

TABLE II. -SUBJECTIVE EVALUATION OF APPETITE DURING EACH WEEK OF STUDY

Appetite
Number
Much better Better Same Worse Much worse of subjects,
Week N
f % f % f % |1 % | f %
1 1 2 7 15 37 91 2 4 0 0 47
2 2 4 5 11 30 64110 | 21 0 0 47
3 0 0 2 3 51 841 81| 13 0 0 61
4 1 2 5 10 31 63112 | 24 0 0 49
5 0 0 5 10 33 67| 9| 18 2 4 49
6 1 2 5 10 32 67| 8| 17 2 4 48
7 1 2 3 6 37 ] 7| 14 1 2 49

It is seen that, in general, from two-thirds to three-fourths or more of the crew reported
that their appetite remained the same. However, as the cruise progressed disproportionately more
of the sample reported their appetite to be worse than reported it to be better. Responses to a
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a direct question pertaining to which meals a man characteristically ate indicated that as the sub-
merged cruise progressed more people missed the noon and evening meals while fewer missed
breakfast.

Some rather gross information pertaining to changes in specific food appetite during ex-
tended periods of submergence can be inferred from a comparison of the relative frequency with
which the same sample of crew members indicated the "best" and the '"least liked" foods at different
times during a 7-week cruise. These data pertaining to food preferences {abstracted and slightly

modified from ref. 7) are contained in table IIL

TABLE III. -BEST AND LEAST LIKED FOOD SELECTIONS

Prepatrol .
Foods (control) Second week Fifth week Seventh week

f % f % f % | t %

Best liked selections

Meats 115 74.2 117 81.8 119 90.9 108 78.3
Green-yellow veg. 19 12.3 9 6.3 10 6.8 11 8.0
Carbohydrate veg. 14 9.0 13 9.1 12 8.2 11 8.0
Legumes 2 1.3 2 1.4 2 1.4 2 1.4
Desserts 5 3.2 2 1.4 4 2.7 6 4.3
Total Selections 155 --- 143 --- 147 --- 138 ---

Least liked selections

Meats 23 16.8 18 13.6 0 0.0 16 12.9
Green-yellow veg. 82 59.9 65 49.3 66 57.4 57 45.9
Carbohydrate veg. 23 16.8 37 28.0 38 33.0 40 32.3
Legumes 9 6.5 12 9.1 11 9.6 11 8.9
Total Selections 137 --- 132 --- 115 - 124 ---

The authors point out that the "most liked" and "least liked" foods are consistently meat and vege-
tables, in that order. Mentioned also is the possibility that carbohydrate-type vegetables are less
liked as the cruise progresses.

In short, the report concluded that in general the hunger motivation of submariners is
not remarkably changed on patrol. The changes that do occur are difficult to relate to any one as-
pect of the environment, but, in any event, are of a nature not considered alarming.

Additional data bearing on the question of specific food preferences are contained in an
FBM study already mentioned (ref. 6). The authors simply asked the 50 men to answer the ques-
tion, "If you could order dinner from (this) menu, what would your choices be ?"" Frequency

distribut ions of these choices for each week of the course are abstracted in table IV.
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TABLE IV.-ANSWERS TO QUESTIONS "IF YOU COULD ORDER DINNER FROM (THIS)

MENU, WHAT WOULD YOUR CHOICES BE ?"

Number of men choosing item in week-

Food item 1 2 3 4 5 6 7

Appetizer

Kadota figs - - - - - - - - _ 3 6 4 4 5 5 4

Seafood cocktail - - - - - - - 35 36 38 41 37 36 37

Herring with sour cream - - - 3 2 3 0 4 4 4
Salad

Tomato aspic- - - - - - - - - 16 13 16 17 16 17 16

Avocado - - - - - - - - - - . 16 17 15 17 17 17 18

Red kidney bean - - - - - - - 11 14 15 13 14 12 12
Soup

Cream of tomato - - - - - - = 13 16 15 17 21 14 14

Beef broth - - - - - - - - - . 23 20 21 23 18 20 26

Potato~ - - - - - - - - - - < 8 9 10 9 10 13 7
Entree

Spaghetti- - - - - - - - - - _ 22 24 26 25 24 22 27

Coldcuts - ~ - - -~ - - - - - 15 14 15 16 16 15 14

Pork sausages - - - - - - - - 7 7 6 8 9 10 7
Vegetables (2 choices)

Rice- - - - - - - - - - - - - 8 8 6 9 10 8 9

Spinach - - - - - - - - - _ _ 15 15 18 11 11 13 13

Carrot - - - - - - - - _ - _ 5 7 7 7 5

Cabbage - - - - - - - - - - _ 5 10 11 8

Corm - - - - - - - - _ - __ 29 24 26 24 23 29 28

Brocecoli- - - - -« - = - - - _ 10 15 13 16 16 16 16

Potato~ - - - - - - - - - - - 7 8 12 12 7 10
Beverage

Black coffee - - - - - - - - - 20 22 22 25 27 26 26

Coffee with sugar- - - - - - - 16 15 13- 15 14 13 15

Coffee with cream - - - - - - 7 10 6 7 5 6

Coffee with cream and sugar - - 11
Dessert

Banana pudding- - - - - - - - 28 31 28 29 26 31 29

Assorted cheeses- - - - - - - 11 13 13 14 10 12

Assorted nuts - - - - - - - - 6 5 5 5 9 6 7
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CONCLUDING REMARKS

It can reasonably be assumed from a review of the data presented in the present paper that:

(1) The Navy apparently has done well by its submarine sailors in the matter of supplying
abundant and appetizing food on prolonged cruises.

(2) Although food does not seem to be a major concern to the submarine sailor, it is one
in which critical attitudes could arise should it degenerate from its present high quality. One
rarely compliments Mom's Sunday dinners because they are supposed to be good.

(3) Except for moderate deviations, the ingestion of food aboard a submarine seems to be
not immoderate even though the icebox is always open. Choice of foods seem to be of a normal
and satisfactory character. Between-meal snacking is not overdone.

(4) No specific submarine literature has been unearthed detailing erotic eating habits
and preferences such as may be found in some confirmed neurotics. This, no doubt, is due to the
procedure for the selection of potential submarine sailors, which is quite thorough.

It woul'd appear that, until NASA is capable of engineering a rotating space ship which
can provide a moderate G loading in its outer periphery, feeding in space will be unsatisfactory.
Hopefully, residence on the Moon will provide a more congenial atmosphere for eating.

The results of the study in reference 6 are best presented by quoting the abstract of that
report:

"Some previous reports indicated that submarine crewmen eat abnormally high amounts
of carbohydrates and that their diet habits include many between meal snacks. If true, these facts
would lead one to expect great oral health problems in submariners; particularly in those on
patrol for long periods. A detailed dietary and oral health study was done aboard the USS Nathan
Hale (SSBN623) to evaluate the problem. The findings essentially disprove the previously re-
ported beliefs. It was found that the FBM crew ate an essentially well-rounded diet with only

a moderate amount of between-meal snacking."
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TexkTiTe 1 Foop DEVELOPMENTS R. W. SCARLATA

General Electriec Co.

Tektite I is a multiagency and industry program jointly sponsored by the Office of Naval
Research, the National Aeronautics and Space Administration, and the Department of Interior,
with participation by the U.S. Coast Guard. The prime contractor is the General Electric Co.,
which furnished the undersea habitat and assisted in program planning and scientific mission
coordination.

On February 15, 1969, four U.S. Department of Interior scientists descended to the ocean
floor in Great Lameshur Bay in the U.S. Virgin Islands and occupied the habitat. By March 18, 1969,
the four aquanauts had established a new world's record for saturated diving by a single team. On
April 15, 1969, the aquanaut team returned to the surface with over 58 days of marine scientific
studies; this is nearly double the previous saturation diving record.

General Electric Co. engineering developed the underwater habitat with the emphasis on
simplicity of design for living, operations, and maintenance. Food preparation, appliances, cook-
ing, and cleanup were expected to require minimum time, so that the aquanauts could apply more
time to the scientific mission. The scientific mission involved in situ studies of undisturbed fish,
lobsters, and other biologic and geologic specimens in Lameshur Bay. (Perhaps the tempting
sight of fish and lobsters swimming by changed the crew's "psychological needs'' for food, but that
is the latter part of this sea story.) An overall description of the scientific mission and habitat will

give a picture of the program, the system, and the constraints on food.
SCIENTIFIC MISSION

Tektite I was man's first, long-term scientific mission into the sea. Almost every aqua-
naut activity had scientific significance, from the analysis of sleep to zooplankton distribution
studies. The scientific mission categories were marine biology, marine geology, biomedical
evaluations, and behavioral studies of an isolated group of men under stress. Stresses included
unknown hazards of long-term saturation diving as well as the sharks and barracuda. The numer-
ous similarities between the hydrospace and aerospace programs may be summarized by stating

that in both the crews must take their environment along.
HABITAT DESCRIPTION

The habitat congists of two, interconnected, 18-ft-high cylinders installed on a base sec-
tion. Each cylinder is 12} ft in diameter and is divided into upper and lower compartments. All
compartments have 2-ft-diameter plexiglas observation ports. Atop one cylinder is an observation
cupola for additional scientific observation of underwater life.
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The Surface Control Center supplies 11.6 CFH of air to the habitat, which maintains the
oxygen level at 160 mm partial pressure. This exchange of air is 0. 34 percent of the total volume.

One can consider the habitat a 99.66 percent closed atmosphere. Carbon dioxide (C02) is scrubbed
with baralyme. That sea-water pressure in the main hatch is equaled by the 2%-times-normal
atmospheric pressure of the habitat, permits this hatch to remain open throughout the mission.

Aquanauts enter the habitat by opening the shark cage door, swimming through the base
tunnel, and climbing a ladder through the main hatch into the wet room. Scuba equipment and wet
suits are removed, rinsed, and stored in closets. As cleanliness and dryness are very important
to health, a shower, hair dryer, and clothes dryer are put to constant use. Wet and dry labora-
tories permit dissection, preparation, and examination of specimens. The water, air pressure,
communications, and electric umbilicals from the Surface Control Center enter the wet room near
the ladder of the engine room.

Upon climbing the ladder into the engine room, one sees the large Environmental Control
System in the center. It contains heat-exchanging, dehumidifying, filtering, and CO, scrubbing
systems. The electric power system and controls, a large food freezer, a wash basin, a toilet,
and a hot-water heater are installed along the room's perimeter. The interconnecting tunnel
leads to the bridge.

The bridge provides for station monitoring, communications, and scientific equipment.

A NASA atmospheric analyzer continuously monitors nitrogen, oxygen, water-vapor, and COy
partial pressures. Portable backup atmosphere monitors are used to check trace gases such as
carbon monoxide (CO) and acrolein. A master communications panel interconnects each habitat
compartment, the Surface Control Center, and way stations in the surrounding water. Additional
communications systems include open microphones, a sound-powered phone, and a regular phone
for talking to surface persomnel. A dual television display is used to monitor crew activities in
each compartment and nearby underwater areas.

Down the ladder from the bridge are the crew quarters. This section contains four bunks,
refrigerator-freezer and oven-stove combinations, and a counter with a built-in sink. Radio and
television provide evening entertainment while the crew sit on folding chairs and eat dinner at a
fold-away table. Underneath the rug is an emergency hatch which permits the crew to escape to

nearby way stations with emergency air bottles.

RESEARCH TEAM CONCEPT
Crew participation began early in the program when the research team concept was de-
veloped "to encourage team effort and spirit with the single purpose of a successful mission"
(ref. 1). Initially, this concept was designed so that the crew could contribute to all phases of
mission planning and operations. However, interest spread and all the engineers were soon deeply
involved in developing Tektite on schedule. The time between proposal submittal and the start of
the operational mission was 14} months.
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FEEDING SYSTEM
Initial System Constraints

Food equipment originally consisted of a combination "Griddle and Pressure Cooking
Fixture" developed for torpedo boats during World War II. ' The freezer stored 16 cu ft of food and
there was an additional 2.2 cu ft of frozen food stored in the combination refrigerator-freezer.

Since the habitat environment was approximately a 99. 66 percent closed atmosphere with
limited scrubbing and filtering capability, cooking was limited initially to heating food, pressure
cooking, occasional baking, and broiling precooked meats. Pressure cooking was eliminated dur-
ing a test session called the "live-in." The cooking fixture was too complicated and all cooking
would be under pressure in the regular mission regardless of the cooking vessel in use. Frying
food represented a primary source of contaminants. In the frying process, animal fats were
broken down into CO and acrolein.

Early in the closed-atmosphere studies by the General Electric Co., CO was found to
appear and slowly increase in a two-gas spacecraft simulator. Detailed investigations found that
small amounts of CO were continuously produced in the body and exhaled (ref. 2). Sjostrand
demonstrated that it occurs through the breakdown in hemoglobin (ref. 3). Man exhales about
10 cc of CO per day. If the oxygen content is lower than normal, and the CO, content increased,
the formation of CO is increased (ref. 4).

The four aquanauts could produce 40 cc of CO per day. Theoretically, on the basis of
human-produced CO alone, the Air Force safety limit of 25 ppm for continuous occupancy would be
reached on the 60th day. Actually, the CO level stabilized early at 20 ppm and remained there
throughout the mission. The 0.34 percent hourly change in the habitat atmosphere was given as

the probable reason that CO did not build up and pass safety limits.
Memu

The menu was developed through a series of iterations beginning with a 5-day repeating
menu. As expected, the aquanauts complained of no variety and the vegetables were evaluated as
"like ocecasionally."

An Air Force "food for space travel' report (ref. 5) had a 30-day mission menu that was
distributed to the crew for comment. The crew commented, '"This is more like it, but couldn't we
have chili, enchaladas, tacos and tamales ?"" Two members had started Sealab III training and had
heard that previous Sealab crews lost their sense of taste during the mission. Their theory was
that spicy food would help prevent everything from having a bland taste. These spicy foods were
agsigned to snack provisioning, since it was too late to obtain accurate caloric contents. An addi-
tional request was that 25 percent of all main meals be frozen TV dinners because 3 hours of
swimming would make the crew too tired to prepare meals.

Final revisions to this menu occurred during the 3-day training period in December.
Fresh eggs were requested, but no one knew if they could survive rapid pressure changes. At

least one meal each week would be fully prepared by the crew, and would include muffins,

75



biscuits, or layer cakes. Again no one knew whether standard batter would rise properly in the
oven. Following this meeting, one food company searched the literature and found that baking under
higher atmospheric pressures had never been reported. They recommended adding baking powder

to the next batter if the first cake did not rise properly.
Training

Two pamphlets, '"Basic Facts in Frozen Food Preparation' and ''Basic Food Concepts, "
were developed and included in the training manual. Basic food concepts were emphasized to
assure that proper nutrition was understood and applied to underwater diving. (For example, eat-
ing carbohydrates with animal protein prevents the liver from rendering animal protein unless for
body growth and maintenance.) This led to discussions of how to keep warm while immersed in
cool water for several hours. Sugar and carbohydrates were not the answer. The U.S. Navy diving
manual (ref. 6) warns that hyperglycemia could occur by eating too many starches and sweets and
thus causing an excess of insulin. Eating protein foods like meat beforehand will provide a longer
and steadier supply of dextros and also provide extra heat through animal protein digestion.

Caloric Requirements

On the basis of a maximum swimming rate of 1 mile/hr, the aquanauts would expend 360
calories. One thousand additional calories in snacks were considered sufficient as the crew would
neither be continuously swimming nor be in the water for more than 3 hours daily. The minimum
of water temperature of 80° F was not considered an important caloric factor since the crew wore

wet suits.
Food Selection

Since frying was not permitted, all fried foods were purchased frozen ready to eat.
Frozen-food priorities were also given to veal, steak, and TV dinners. Although food priorities
were supposed to be complete before the mission started, several food items were missing, in-
cluding dozens of fresh eggs, 48 TV breakfasts, 9 half-gallons of ice cream, and 24 pounds of
hamburger, cake, and bread. This resulted in an interesting change that started toward the end
of the first week of the mission as described in the following anecdotes: ‘

Feb. 16, Sunday evening, the crew was unable to find Mexican food. The

test director told them where it was stored. Note: the crew did not follow the

menu but went to snack provisions, an approved procedure since daily pref-

erences are more important to the crew.

End of first week, the crew requested the missing fresh eggs.
Second week, an apple pie suddenly appeared on the television monitors.

This pie was sent to the habitat by the dumbwaiter. Additional eggs were re-

quested along with milk and vegetables.
Third week, the crew began requesting more fresh foods. At the end of
the first month an aquanaut's wife prepared a beef stroganoff dinner for the

crew to celebrate their 30th day underwater.
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During the second month, food lists were sent to the surface on the

average of three times each week.

Preliminary reports from the crew indicate that eating turned out to be their major enter-
tainment. Pre-prepared meals were poor. Individually prepared meals were good. There were
intermittant annoyances with the refrigerator and stove. We do not know presently whether these
annoyances were failures or a function of the high atmospheric pressure in baking.

If Tektite were to be designed over again, the following changes would be made:

(1) Add a fast potato baker, a toaster, and a waffle iron to the cooking equipment.

(2) Develop recipes designed to turn canned and frozen foods into more appetizing meals.

(3) Monitor food shipments to see that only frozen foods are frozen, refrigerated foods
are kept cool, and nonfreezable food kept properly.

(4) Provide a food expert to develop a food subsystem.

In addition to these changes, for the future, consider the following questions:

(1) How long can different frozen foods remain safe to eat and palatable ? Could frozen
eggs become infected with Salmonella ?

(2) What part of the appetite is a function of food preparation and cooking odors ?

(3) Does the complex sense of taste really change ?

(4) Should cooking be assigned as the primary activity of one crew member ?

(5) Snace scientists are concerned about crew inactivity on such long-duration space
missions as a voyage to Mars. Food preparation and cooking could use 6 hours every day. Is
this the answer ?

Future interplanetary spacecraft and orbiting space stations are expected to be large
enough for the crew to have canned foods for many meals. Tektite started in this direction, but
the challenge is to provide technical advances, training, recipes, and menus to make basic canned

foods and frozen foods into delicious dinners in closed atmospheres.
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Foop PLANS For Seatas [11 LOUELLA C. PETERSON

Navy Subsistence Office

The food service planned for Sealab III is as interesting as that planned for space flights.
Whereas most foods used or planned for use during space missions are considered "tomorrow
foods' by the general public, all foods planned for Sealab III are "today foods' because they are
available for restaurant and institutional feeding and many are even available in supermarkets for
home use. Even though Sealab III will have no rated cook on board, and despite the cooking limi-
tations imposed by the pressurized helium-nitrogen-oxygen atmosphere, aquanauts will eat meals
of fried chicken, hamburgers and French fries, spaghetti and meat balls, chili, beef stew, and
many other favorite foods of Navy men.

The need for variety and for familiar foods has been stressed by Captain George Bond,
Chief Medical Officer and Principal Investigator for the Sealab III phase of the Navy's man-in-
the-sea program. Since the Navy Subsistence Office had not participated in food plans for Sea-
labs I or II, Captain Bond has explained in detail how the experience gained during these opera-
tions had proven the importance of good food and an organized food service system. For Sealab I
there was no clearly defined food service program and no planned menu. Because of the many
technical problems to be resolved before the experiment food was of minor concern. Someone
simply sent one of the divers to buy enough canned foods to provide meals for 3 weeks under the
sea. The shopper, who happened to be extremely fond of Mexican foods, stocked Sealab I with
cases of chili con carne and tamales, but with little else. It was probably fortunate that bad
weather conditions shortened the 21-day experiment to 10 days, because the men had had more
than enough of this food.

Although a reasonably varied menu consisting of canned foods and some dehydrated foods
was used for Sealab II, the provision of nourishing, satisfying meals was, according to Captain
Bond, one of the most annoying problems encountered in the 45-day operation. There were no
organized meals; the divers prepared food when they wanted it, perhaps six or seven times a
day! From time to time the men requested that some roasted, grilled, or fried meats be sent down
to them because they were tired of meat-and-gravy combination dishes. Their pancakes scorched
on the bottom and wouldn't cook on the top, fingers and toast burned, and peanut butter consumption
rose steadily. Although the aguanauts averaged a 5-1b weight gain, there was general dissatisfac-
tion with the food.

In May 1966, when the Navy Subsistence Office was requested to develop a food service
system for Sealab III, Captain Bond and Comdr. Jackson Tomsky, On-Scene Commander for
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Sealab III, briefed us about future plans and furnished some ground rules which would affect the
food service system.

For successive 12-day periods, five 8-man teams would live in and work out of a habitat
in ocean depths of 450 to 600 ft off San Clements Island, Calif. During the 60-day operation, ex-
periments in oceanography, physiology, deep-sea ocean salvage, equipment performance, and
construction would be carried out. Because of the physical demands, the complexity of tasks the
teams would undertake, and the psychological effects of living under these unusual conditions,
Captain Bond requested that meals furnish 4500 calories per man per day, be satisfying, and be
as normal as possible within the following limitations:

(1) There would be no rated cook; the aguanauts would take turns preparing meals.

(2) Since there would be a predominantly helium atmosphere in the habitat there would be
no fresh egg cookery, no frying, and no grilling, in order to avoid production of toxic gases in the
Sealab environment. The helium atmosphere would also dull the men's senses of smell and taste.

(3) Foods would be under pressures of up to 270 psi; cans containing dry lightweight
foods would crush to the point that they could not be opened.

{4) There would be only limited storage space for food: 7 cu ft chill, 27 cu ft freeze, and
75 cu ft dry storage. Replenishments were to be held to the minimum that would not seriously
compromise the makeup of the menu.

In addition to menus, preparation instructions, loadout and replenishment schedules,
recommendations on food preparation equipment, and coordination of requisitioning, procurement,
and positioning of all food supplies were needed.

Figure 1 shows Sealab III. The overall length is 625 ft; its width, 19 ft; its height, 38 ft;
and its weight, 299 tons. The galley is in the center section. Dry storage is overhead in the
section to the right of the galley, and the freezer is in the lower right section . Galley equipment
consists of an infrared oven, a 4-burner electric hotplate, a small refrigerator, and hot and cold
running water. The sleeping/dining area is in the section to the right of the galley. Figure 2
shows an artist's conception of the surface support ship and Sealab III. The USS Elk River (IX - 501),
built originally as a Landing Ship, Medium Rocket, was modified to support underwater programs
such as Sealab III. This ship provides stowage for the various gases required in the Sealab experi-~
ment, the command and communications center for Sealab III, the physiological monitoring and
medical center, two deck decompression chambers, and two personnel transfer capsules. Fig-
ure 3 shows the deck decompression chamber. The plan calls for four men to enter each chamber
for compression to a pressure of 270 psi (requires 24 hr). Then, four men will enter each pres-
surized personnel transfer capsule (fig. 4) for descent to the habitat. When they arrive there, the
Sealab III Food Service System will be put to the test.

In developing any food plan, the first logical step is to determine relative acceptance of
different foods. Since the Navy Experimental Diving Unit is located about a block away from the
Navy Subsistence Office, it provided an ideal, though unusual, site for a test galley and, in addition,
a cooperative group of taste-test panelists: Navy divers in training for Sealab III. The first ac-
ceptance tests conducted were on the excellent freeze-dehydrated entrees developed by the Army

80



P10 T e o

e

+

-t

[

Figure 1. -Sealab III.

Natick Laboratories for the Long Range Patrol Ration. These entrees were ideal from the stand-
points of stowage, stability, and ease of preparation. Although the divers thought the entrees were
amazingly good, they rejected them completely as far as Sealab III food plans were concerned be-
cause of the small plece size and (in their opinion) the similar appearance of different entrees.

Next, the acceptances of precooked frozen entrees and selected canned entrees were
tested. For maximum speed and ease of reconstitution of these entrees, a microwave oven was
first necessary. Microwave tubes were tested under simulated atmospheric conditions of Sealab III
and were ruled out because helium seepage rendered them inoperable. An infrared oven was then
checked out and approved for use. Using the oven, we prepared and conducted acceptance tests on
selected precooked frozen and canned-entrees. The divers rated these entrees highly acceptable
and stated that they would be willing to eat some of them as often as twice a week, and many, as
often as once a week.

For maximum stowage efficiency and for simplification of the food service system aboard
Sealab ITII, we developed a 6-day-cycle menu. Each team will repeat the cycle once during its
12-day stay on the bottom. Remembering that the Sealab II aquanauts had tired of meat and gravy
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Figure 2. -Artist’s conception of surface support ship and Sealab III.



Figure 3.-Deck decompression chamber.

combinations, we made a special effort to find suitable precooked frozen or easy-to-prepare meats
that were packed without gravy. The most easily obtainable and most common meat in this category
was the frankfurter; another was boneless cooked ham. Two other popular entrees, fried chicken
and hamburgers, both precooked and frozen without sauce or gravy, are also included in the menus
and will help to satisfy the divers' desires for plain and familiar meats.

It was uncertain that we could serve hamburgers for awhile, though, because of a problem
related to Sealab IIl's atmospheric conditions. When the precooked hamburgers were heated in the
infrared oven, additional fat rendered off. Sealab medical officers were concerned that resulting
acrolein production would be a problem in the Sealab IIl atmosphere. But we were determined to
find a way to serve the aquanauts hamburgers, so we experimented. We found that placing the pre-
cooked frozen hamburgers in hamburger buns and wrapping them in aluminum foil eliminated the
acrolein hazard. When the hamburger is heated, the fat renders into the bun. This method was
tested in atmospheric conditions simulating those of Sealab [I and no problems with acrolein re-
sulted. Other entrees in the 6-day menu are pot roast of beef, chili con carne, beef shortribs,

roast pork loin, roast turkey, Swiss steak, beef stew, and spaghetti and meat balls.
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Figure 4. -Personnel transfer capsule.

Since fresh egg cookery was ruled out, breakfast menu planning was challenging. Although
after several failures, Sealab II aquanauts were able to prepare a "crepe'" version of pancakes, we
decided to take the work and worry out of their cooking with precooked, frozen pancakes. These,
along with precooked frozen French toast, plain and cheese omelets, ham, and canned corned beef
hash and creamed dried beef, will provide varied, hearty, and satisfying breakfasts.

The rest of the food items in the menus (vegetables, cereals, desserts, beverages, etc.)
are all in either ready-to-eat or ready-to-heat-and-eat forms. Fresh bread and some pretrimmed
fresh produce items will be furnished every 4 days by means of a pressurized container that is used
to send mail and other supplies back and forth between the habitat and the surface support ship.

All dry-storage foods, frozen items to support the first three teams, and perishable bread
and produce will be preloaded. Frozen foods for Teams 4 and 5 and perishable foods will be re-
plenished according to an approved schedule.

The menus list itemg and quantities of each needed for 8 generous portions. Preparation
instructions will guide each "'cook of the hour" on what to do first and how to proceed, with step-

by-step directions. The aquanauts will eat three regular meals together each day. A fourth meal,
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consisting of soup and sandwiches or snacks, will be available for each man to prepare when he
wants it. Fruit juices, cocoa, milk, coffee, and tea are also provided in sufficient quantities for
between-meal use if desired.

Daily weight checks on each aquanaut for 3 days before compression and for 3 days after
decompression are planned. Other than weight check, no nutrition-related studies have been in-
cluded in the physiological evaluations in Sealab IIl. No doubt there will be verbal reactions to
the meals during the operation. In addition, in order to document the acceptance of individual
menu items the aquanauts will complete food acceptance reports. An analysis of these reports
along with data on usage of individual items will permit an objective evaluation of Sealab III's food

service system.
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ADVANTAGES, PROBLEMS ., EDWARD S. JOSEPHSON

AND EXPERIENCES
U.8. Army Natick Laboratories

oF IRRADIATED Foobps

I appreciate having the privilege of attending the Aerospace Food Technology Conference
and the opportunity to talk to you about irradiation-preserved foods. I shall cover a program
supported by between $40 and $50 million of expenditures of the U.S. Government during the last
16 years and programs which, although not of this magnitude, are planned or are underway in 74
other countries.

The following quotation is from reference 1:"Soviet cosmonauts aboard the recent Soyuz 4 and
5 flights became the first men in space to eat irradiated foods. The four cosmonauts had with them
radiation-preserved meats wrapped in polyethylene film, as well as dried meats in cans. On fu-
ture flights, Soviet scientists expect to substitute irradiated vegetables, fruit salads, and dry soup
mixes, as well as meats, for the vacuum frecze-dried foods which now constitute the basic diet of
cosmonauts. "

The Soviets see the advantages of irradiation-preserved foods in support of manned flights
in space. I propose to present the current status of this process for food preservation so that you
can decide whether, and to what extent, irradiated foods will fit into feeding systems for individ-
uals and small groups in isolation and where resupply is not possible. (More information on the
subject is included in refs. 2 to 10.)

IONIZING RADIATION
Definition

Ionizing radiation for food preservation is the employment of fast-moving subatomic
particles or electromagnetic waves which are energetic enough to strip electrons from atoms or
molecules of matter. Although there are a number of different classes of such radiation, only beta
(or electron) and gamma radiations are of interest in food processing.

The way in which ionizing radiations act is not clearly defined. There are theories calling
for direct hits, and those calling for indirect hits. Both of these types probably contribute tc achiev-
ing the desired effect, which may be to inhibit sprouting of tubers during storage, to slow down the
ripening of fruits, or to destroy microorganisms causing food spoilage. The direct-hit theory
suggests that the nuclear rays (or high-speed electrons) strike the vital spot much in the same man-
ner as a fast-moving projectile strikes its target. The indirect-hit theory suggests that the highly
energetic particle subjects the molecule(s) near which it passes to an intense, transient electrical

force. The organization of electrons within each molecule is disturbed and many molecules along
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the path of the particle become "excited" or ionized. In their highly reactive state, free ionized
molecules enter almost instantly into reactions with one another and with neighboring molecules
producing as their end products new substances strange to the chemistry of the cell. The unstable
secondary products, notably free radicals and peroxides, relay the disturbance in turn to other
molecules in the cell, thus enlarging the area and scope of injury.

Applications to Food Preservation

Some of the more promising applications of ionizing radiation to the treatment of food are
shown in table I. At the highest irradiation doses, all food spoilage organisms and pathogens trans-
mitted by food are killed; prepackaged meats, poultry, and seafood can keep for years without re-
frigeration and on the plate of the consumer will still have a degree of acceptance approximating
that of fresh food freshly cooked. At the lowest irradiation doses, certain physiological functions
associated with sprouting in tubers such as white potatoes and in bulbs such as onions will be dis-
rupted; these foods will not spoil during storage for as long as 1 year because of sprouting. Ex-
posure of fruits such as tomatoes, bananas, mangoes, and papayas to intermediate doses of
ionizing radiation will slow down ripening, and give these foods an extended shelf life ranging
from a few days to several weeks. One application not included in table I is the use of irradiation
to shorten rehydration and cooking time of dehydrated vegetables. For example, with diced pota-
toes an irradiation dose of 8 megarads can shorten cooking time from approximately 20 minutes
to less than 4 minutes.

Advantages

The irradiation process is attractive because‘there is only a slight temperature rise in the
foods during the course of the treatment. It is considered a "cold process.™ The irradiated foods
undergo minimal changes in texture, flavor, odor, and color so that on the plate of the consumer
the irradiation-preserved food is almost indistinguishable from fresh food freshly prepared. The
advantage of this process is that we can put freshlike food on the plate of the consumer on land,
under the waters, in the air, and in outer space.

Another advantage of the process is its flexibility; that is, the process can be used to pre-
serve a wide variety of foods in a range of sizes and shapes ranging from crates of potatoes to pre-
packaged flour in 50- or 100-pound sacks, to Iarge roasts (beef, lamb, pork), turkeys, and hams,
to sandwiches of sliced meat, fish, and chicken. The variety and dimensions of products that can
be preserved by ionizing radiation fit in very well with present and anticipated future processing
methods of the food industry. Astronauts and personnel at the bottom of the sea can have their
meals and snacks in ready-to-eat form, in the form of slices or sandwiches, or as warm-and-
serve or cook-and-serve items. Foods processed by ionizing radiation are compatible with the
trend for greater convenience, simplicity in preparation, and reduction of labor in the kitchen. The
shelf-life extensions without refrigeration are measured in days or weeks for certain fruits and
vegetables and are from 3 to 5 years and possibly even longer in the case of meat, poultry, finfish,
and shellfish.
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TABLE I. -SOME POSSIBLE APPLICATIONS OF IONIZING RADIATION TO TREATMENT OF FOOD
[Information taken from ref. 2]

Means of attaining

Group Food Main objective objective Dosage, Mrad
a Meat, poultry, fish Safe long-term Destruction of spoilage 24 to 6
and many other preservation with- organisms and any
highly perishable out refrigerated pathogens present,
foods storage particularly Cl.
botulinum
b Meat, poultry, fish Extension of Reduction of population 0.05to 1.0
and many other refrigerated of microorganisms
highly perishable storage below capable of growth at
foods 3°C these temperatures
c Frozen meat, Prevention of food- Destruction of bO. 3to1.0
poultry, eggs, poisoning Salmonellae
and other foods,
including animal
feeds, liable to
contamination
with pathogens
d Meat and other Prevention of Destruction of para- 0.01 to 0.03
foods carrying parasitic disease sites such as Tri-
pathogenic para- transmitted chinella spiralis and
sites through food Taenia saginata
e Cereals, flour, Prevention of loss Killing or sexual 0.01 to 0.05
fresh and dried of stored food or sterilization of
fruit, and other spread of pests insects
products liable
to infestation
f Fruit and certain Improvement of Reduction of population 0.1t00.5
vegetables keeping proper- of molds and yeasts
ties and/or in some in-
stances delay of
maturation
g Tubers (e.g., Extension of Inhibition of sprouting 0.005 to 0.015
potatoes), bulbs storage life
(e.g., onions),
and other under-
ground organs of
plants
h Spices and other Minimization of Reduction of popula- 1to3

special food in-
gredients

contamination
of food to which
the ingredients
are added

tion of microbes in
special ingredient

AThere is evidence that a lower dose might suffice for certain cured products.

bA higher dose may be needed if pathogens with greater resistance to radiation are present.
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With ionizing radiation we can provide foods high in nutritive value and foods high in
morale value. We can provide better quality food than hitherto bossible. The food can be disease
free, that is, free of all pathogens associated with food-borne diseases. We can provide a larger
variety of foods such as fresh fruits and shelf-stable meats and poultry which have the character
of fresh food. Because the food can be prepackaged and precooked at one place prior to irradiation,
the cost in money, time, and labor for food handling all the way to the ultimate consumer can be re-
duced. Further reductions in cost result from reducing requirements for refrigeration and refriger-
ation maintenance. Spoilage losses from insect infestation, sprouting, or refrigeration breakdown
will be minimized. By providing a broader spectrum of foods througﬁ introduction of irradiated
items, discord from food monotony, particularly during long voyages, will be reduced.

Legal Aspects

Ionizing radiation is the first entirely new method used to preserve food since Nicholas
Appert discovered thermal canning in 1809. The irradiation process is the first major food-
preservation method to appear since food regulatory agencies were established at the national level
in many countries.

In the United States the food regulatory agency most directly involved is the Food and Drug
Administration (FDA). In the case of meats and poultry, the Department of Agriculture (USDA)
also has legal responsibility.

There are several statutes which control the use of ionizing radiation for food processing.
Among the laws are the Food, Drug, and Cosmetic Act as amended in 1958. Under this law ioniz-
ing radiation is legally defined as a food additive. The Federal Meat Inspection Act and the Poul-
try Products Inspection Act have been on the books for a long time. In recent years, with the
great interest in consumer affairs, we have seen passage in 1966 of the Fair Packaging and Label-
Ing Act; in 1967, of the Wholesome Meat Act; and, in 1968, of the Wholesome Poultry Act.

The impact of the Food, Drug, and Cosmetic Act of 1958 is to outlaw all new food addi-
tives, including ionizing radiation, from commercial application. The law provides for exemption
from this universal ban by petitioning the FDA for approval of new food additives. For food pres-
ervation by ionizing radiation, FDA's approval is required for each food proceséed in this fashion.
The law also requires approval by FDA of packaging materials in contact with food during radiation

processing.
Organizations Involved

Because of the high cost of developing the process for preserving foods by ionizing radi-
ation and the uncertainty that petitions will be approved by FDA, most of the effort in the United
States is sponsored by the U. S. Army and the Atomic Energy Commission (AEC). The Army's
effort is primarily in the use of radiation sterilizing doses, i.e., doses above 1 Mrad. The AEC,
on the other hand, is concerned primarily with applications of radiation doses below 1 Mrad.

The pverall program in the United States is reviewed periodically by the Joint Committee
on Atomic Energy, Congress of the United States. The Interdepartmental Committee on Radiation
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Preservation of Foods, consisting of ten departments and independent agencies of the government
(NASA is a member) assists in promoting early commercialization of radiation-preserved foods.
Ionizing radiation for food preservation is considered to be an important peaceful use of
atomic energy. Itis, therefore, part of the President's Atoms for Peace Program.
At the international level the following three agencies of the United Nations are concerned
with preserving foods by ionizing radiation: the International Atomic Energy Agency, the Food and
Agriculture Organization, and the World Health Organization. '

Status

Except for proof of wholesomeness convincing to FDA, technology is sufficiently de-
veloped to support petitions for the irradiation-sterilized products listed in table II. These foods
can vary in 'degree of doneness from partially cooked to ready to eat. Other irradiation-sterilized
foods in various stages of development are ground beef (hamburger), pork sausage, corned beef,

frankfurters, turkey, lamb, fish fillets, and prefried bacon.

TABLE II. -MINIMUM RADIATION DOSE REQUIREMENTS (MRD)
FOR IRRADIATION-STERILIZED PRODUCTS

Product Irradiation temp., °C = 10° C MRD, Mrad
Beef ~-30 4.66
Beef -80 5.70
Chicken -30 4.48
Ham -30 3.66
Ham Ambient 2.90
Pork -30 5.09
Pork Ambient 4.56
Shrimp -30 3.72
Bacon Ambient 2.30
Codfish cakes -30 3.17

The AEC, which concentrates its food-preservation program on low-dose applications of
radiation geared primarily to the civilian market, has successfully processed cod, haddock, shrimp,
clams, chicken, strawberries, tomatoes, citrus fruits, papayas, mangoes, peaches, bananas, and
mushrooms.

Packaging is another important aspect of radiation sterilization. Most of the earlier work
was done with the figid metal can with an oleoresinous or epoxy-phenolic enamel because of its
reliability as an impermeable and rugged container. Now the emphasis is on lighter weight and
less expenseive flexible packaging materials which would not require critically short metals during
a national emergency. U. S. Army and AEC'researches have been successful to the extent that the
following flexible packaging materials have been approved by FDA as food contactants for the irra-
diation process:
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Up to 1 Mrad:
Nitrocellulose-coated cellophane
Saran coated cellophane
Glassine paper

Wax-coated paperboard

Nylon 11 film
Polystyrene film
Rubber hydrochloride film
Up to 6 Mrads:
Vegetable parchment
Polyethylene film
Polyethylene terephthalate film

Nylon 6 film

Viny! chloride and vinyl acetate copolymer film
Up to 50 000 rads:

Kraft paper for wheat flour only

In radiation sterilization the need is for flexible materials which can withstand the stress of
high radiation doses and low temperatures down to -40° C without loss of flexibility or impairment
in functioning as an impermeable barrier to moisture, gases, and microorganisms. These materi-
als must be sufficiently stable during irradiation processing that they do not impart off-odors, off-
flavors, or toxic products to the food. Their all-around reliability must approach that of the rigid
metal can. In order to reinforce strength of the material and keep out light that can accelerate
adverse color changes, the food contactant materials are laminated to aluminum foil and other

barrier materials. Two of the more promising laminates are shown in table IIL

TABLE III. -FIRST SPECIMENS OF FLEXIBLE PACKAGING

Food-contacting Middle Outside
film (inside) layer layer
Nylon-11, Aluminum foil, Mylar,

2 mil 0.5 mil 0.5 mil
Medium-density Aluminum foil, Paper (water
polyethylene, 0.35 mil resistant),

2.5 mil 2 mil

The proof of success in radiation processing of foods is in the eating. We use expert and
consumer taste panelists who rate the foods on the 9-point hedonic scale developed by Peryam and
Pilgrim (ref. 11):
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L1

Like extremely

Like very much

Like moderately

Like slightly

Neither like nor dislike
Dislike slightly

Dislike moderately

NM)#C.HC’VN‘I@&O

Dislike very much

1 Dislike extremely
In table IV are shown the scores given by volunteers at Fort Lee, Va., who tested irradiated foods
as components of meals of the type served in mess halls in the United States. An irradiated food
is considered to be satisfactory if it receives a score above 5 on the 9-point scale. Although the
irradiated foods scored slightly lower than their nonirradiated fresh counterparts (the control in
the experiment), they scored well within the acceptable range and are considered to be satisfactory

for incorporation into Army rations.

TABLE IV.-ACCEPTANCE OF IRRADIATION-STERILIZED MEATS, POULTRY, AND SEAFOODS

Nonirradiated
Irradiated control
Item
‘ Stor- No. Av hedonic No. Av hedonic
Dose, Temp., age, men rating on men rating on
Mrad ocC months | rating 9-point scale | rating |9-point scale

Ham 3.5-4.4 Ambient 2 570 5.84 739 6.45
Ham 4.5-5.6 ~-30 3 1657 5.87 1437 6. 66
Chicken | 4.5-5.6 -30 3 313 6.14 297 6. 50
Chicken 4.5-5.6 -30 3 270 6.00 251 6.22
Pork 4.5-5.6 Ambient 5 305 7.27 345 7.28
Pork 4.5-5.6 -30 3 391 5.71 458 6.85
Beef 4.5-5.6 | 2-60 4 515 6.11 660 6.79
Beef 4.5-5.6 -185 3 502 6.25 710 6.79
Beef 4.5-5.6 -80 5 589 5.99 644 6.61
Shrimp 4.5-5.6 -30 7 247 5.79 446 6.25
Shrimp 4.5-5.6 -30 7 292 6.39 403 6.23
Codfish | 4.5-5.6 -40 3 531 5.40 578 6.30

2 _60° C at start of irradiation.

In table V are preference scores for irradiation-sterilized hams that have been served at
experimental luncheons. The preference scores for these hams are in the same range as are those
for apple pie and ice cream.
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TABLE V.-ACCEPTANCE OF IRRADIATED HAM
WHEN SERVED AS COMPONENT OF REGULAR MEALS

[Irradiated hams stored at room temp. for 1 to 12 months prior to serving; testing period, June 1966
to April 1969 ]

Irradia- Average
Dose, tion acceptance
Mrad temp. , ' No. rating on
(+12 oc Items men 9-point
to +25%) (x10°C) rating hedonic scale
4.5 -30 Baked ham with pineapple glaze 17 7.29
4.5 30 |- - - - - - - - - - - 46 6.95
4.5 30 |- -------------- 20 6.88
4.5 -30 |-----=-=-=-=-===- - - 19 6.80
3.5 -80 |- - - - - - - - - - - - - - 11 7.40
3.0 80 |- -~~~ - - 22 6.91
3.5 80 |--------------- 20 7.84
3.7 30 |--------------- 15 6.87
4.5 -80 Baked ham with pineapple sauce 18 8.11
4.5 -80 Baked ham with orange-pineapple 20 7.91
glaze
3.5 -80 Baked ham with orange glaze 12 8.16
4.5 -30 Baked ham with raisin sauce 15 7.20
3.5 -80 Baked ham with mustard glaze 20 7.58
4.5 80 f----- - - - - 18 7.5
4.5 I R 18 7.29
4.5 -30 |- ----=-=-=-=-=--- - -- 28 7.20
4.5 -30 Fried ham steaks 18 7.38
4.5 -30 Grilled ham steaks 15 8.26
3.7 -30 Baked ham 10 7.60
3.7 30 |- ----=-=--=«----- 20 6.69

Description of the Process

For most applications it is important to use good quality ultrafresh food as starting
material. Radiation cannot reverse deterioration and spoilage of food once it haz begun; it can
only arrest or prevent these conditions. Nor should radiation be used as an excuse for poor sani-
tation practices; its intended use is for insurance against contamination which might occur in spite

of all reasonable precautions.
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Fruits and vegetables are irradiated in boxes or crates to minimize excessive and extrane-
ous handling and to keep processing costs to a minimum. Meats, poultry, and fish fillets to be given
pasteurizing doses to extend refrigerated shelf life should be wrapped and chilled without delay
prior to irradiation.

For prepackaged meats, poultry, and seafood which are to be given sterilizing doses to
promote long-term shelf stability without refrigeration, the first step is to remove as much of the
inedible material as possible by deboning and trimming off gristle and excess fat. The next step is
to inactivate the proteolyte enzymes in these foods. This is done by treating (blanching) to an in-
ternal temperature between 65° C and 75° C. The foods are then vacuum packaged and sealed while
still hot in rigid metal cans or flexible packaging materials. The foods are then frozen without de-
lay by blast freezer or liquid nitrogen to a temperature of -30° C and are exposed while held at
-30° + 10° C either to gamma rays (from Cobalt-60 or Cesium-137), X-rays, or electrons from an
electron linear accelerator. Irradiation in the frozen state minimizes adverse chemical and physi-
cal changes which may occur so that the quality of the product (taste, color, odor, texture, and
vitamins) is maintained.

Clostridium botulinum is the most radiation-resistant of all the mieroorganisms of con-

cern in food preservation. A dose high enough to destroy the most radiation-resistant strain of
this bacterium will automatically destroy all other organisms in food which are of food spoilage

or public health importance. In determining the minimum radiation dose (MRD) for sterilization,
we aim for a dose high enough to reduce in number by a factor of 1 x 1012 the most highly resistant
strain of Cl. botulinum spores. This dose is different for each food and mwst be determined in

every case by laboratory experiments.
Wholesomeness

Under existing statutes in the United States and in many other countries proof convincing
to the appropriate health-regulating officials of safety for consumption {wholesomeness) of foods
processed by ionizing radiation must be provided before these foods will be approved. In our re-
search to appraise wholesomeness, the field is divided into four categories: Absence of induced
radioactivity, microbiological safety, nutritional adequacy, and absence of carcinogens and other
toxic products which may be formed by the exposure to ionizing radiation.

Under existing statutes FDA has interpreted the law concerning absence of induced
radioactivity as absence of measurable induced radioactivity above the background radioactivity
in food and packaging material in contact with the food. The maximum energy of the gamma rays
from Cobalt-60 and Cesium-137 is below the threshold level for activation of elements normally
occurring in food. Accordingly, foods processed by these two radioactive isotopes are universally
regarded as free from induced radioactivity at the highest radiation doses shown in table I. Use
of X-rays at energies below 5 million electron volts (MeV) at the radiation sterilizing doses shown
in table I will not induce measurable radioactivity. In the case of electrons, an expert committee
convened by FAO/IAEA/WHO in Rome, Italy, in April 1964, established 10 MeV as the maximum
energy level generally regarded as below the threshold level for inducing measurable radioactivity
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in radiation-sterilized foods (ref. 2). The United Kingdom, however, has set the maximum
figure for electrons at 5 MeV.

Microbiological safety in radiation-sterilized foods has been discussed previously. The
use of doses required for reduction in numbers of the most radiation-resistant strains of Cl.
botulinum by a factor of 1 x 1012 provides a wide margin of safety. In the radiation-pasteurization
range, the problem of microbiological safety is complicated by the possibility of inducing radiation-
resistant mutants and upsetting the ecological balance by eliminating vegetative food spoilage organ-
isms associated with off-odor and color, thereby permitting Clostridia to germinate and produce
toxin. The current thinking for radiation pasteurization is to use radiation doses low enough to
permit microorganisms associated with obvious spoilage to survive in sufficient, though reduced,
numbers to give the consumer ample warning.

The use of radiation-sterilizing doses is limited to meats, poultry, finfish,and shellfish
because none of the other major classes of foods can withstand the high doses required. At the
maximum radiation doses shown in table I, there is little or no impairment in the nutritional quality
of the protein or in its availability and digestibility. Similar results have been reported for essen-
tial fatty acids. For most foods of animal origin, man does not depend upon skeletal muscle as a
significant source for his daily vitamin needs. The major exception is pork which is a rich source
of thiamine. At the request of USDA the percentage retention of thiamine in irradiation-sterilized
canned pork loin and ham was investigated and compared with that of pork and ham from the same
lots which had been made shelf stable by heat. The figures for the processed meats were compared
with the untreated pork loin and ham from the same lots. The study was expanded to include ribo-
flavin, niacin, and pyridoxine in addition to the thiamine. The data are shown in tables VI and VII
and indicate that the four B vitamins studied are generally less susceptible to destruction by
sterilization treatment at a 4.5 to 5.6 Mrad dose at -30° + 5° C then by the conventional thermal
treatment. It is concluded that the radiation-sterilization process as developed for those foods
shown in table II will not significantly impair their nutritional quality. Similar studies for foods
subjected to substerilizing doses are being conducted by the AEC and by investigators abroad.

The fourth aspect of wholesomeness--the freedom from carcinogenic or toxic products
formed in food by irradiation--has been extensively studied by the U. S. Army Medical Department.
Twenty-one foods representing all the major food classes in the diet of North Americans were fed
to rats, mice, dogs, or monkeys for 2 years and, in the case of the rodents, for 4 generations.

The level of irradiated food in the daily diet on a dry-weight basis was 35 percent. In reference 4 the
U.S. Army Surgeon General reported that foods irradiated up to absorbed doses of 5. 6 Mrads with

a Cobalt-60 source of gamma radiation or with electrons with energies up to 10 MeV have been

found to be wholesome, i.e., safe, and nutritionally adequate. TFeeding studies sponsored by the
AEC and by scientists abroad have not uncovered evidence to indicate that foods processed by
ionizing radiation are not wholesome.

This issue, the ability to demonstrate that the irradiation process does not produce car-
cinogenic or toxic products which will harm the consumer, is the number 1 problem which must
be solved before this process can be established commercially.
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TABLE VI.-EFFECT OF PROCESSING ON THE VITAMIN CONTENT
OF SHELF-STABLE CANNED HAM

[Data furnished by Mrs. Miriam H. Thomas, Nutrition Div,, Natick Labs ]

Vitamin Treatment mg/100 g2 9, retention !

Thiamine Control 3.82 + Po.38 -
4.5 Mrad at -80° +5° C 3.25 1 0.79 85

Thermally processed 1.27 £ 0.36 32

Riboflavin Control 1.01 + Po.18 -
4.5 Mrad at -80° +5° C 1.25 £ 0.09 123

Thermally processed 1.10 £ 0.24 109

Niacin Control 31.5 + b0. 81 -
4.5 Mrad at -80° +5° C 23.8 +2.92 76

Thermally processed 14.6 + 4.49 46

Pyridoxine Control 1.11 + bO. 15 -
4.5 Mrad at -80° + 5° C 1.02 + 0.12 92

Thermally processed 0.64 + 0.03 57

8Moisture, fat, salt-free basis.

bAverage + S.D. Three samples per treatment.

I am optimistic that these irradiated foods will ultimately become commonplace on our din-
ing-room tables because of their generally excellent quality. Ibase my expectation that the whole-
someness question can be resolved not only on the results of the Surgeon General's research but on
data from wholesomeness studies sponsored by the AEC and by reports from other countries. Iam
further encouraged because of the outcome of a meeting of experts convened by the World Health
Organization in April 1969. From the deliberations of this group, the World Health Organization will
recommend to all its member countries that irradiated potatoes and irradiated wheat and wheat flour
be given iterim approval until June 30, 1974. This will allow time to accumulate sufficient additional
wholesomeness data to support final approval for these foods.

Now, what are we doing to prove wholesomeness ? The U. S. Army Medical Department
is planning to resume animal feeding studies of ham, beef, chicken, pork, frankfurters, and
luncheon meats to assess their safety for consumption. We expect this work to be completed by
the middle 1970's when petitions will be submitted to FDA and to USDA for Vaprproval. The AEC is
conducting wholesomeness studies on irradiated bananas, strawberries, and papayas to be followed

by those on several varieties of fish.
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TABLE VIL.~-EFFECT OF PROCESSING ON THE VITAMIN CONTENT
OF SHELF-STABLE CANNED PORK LOIN

i [Data furnished by Mrs. Miriam Thomas, Nutrition Div. Natick Labs. ] _

Vitamin Treatment mg/100 g* % retention
Thiamine Control 3.69 + Po. 22 —
4.5 Mrad at -80° £+ 5° C 3.14 + 0.25 85
Thermally processed 0.76 £ 0.08 20
Riboflavin Control 1.02 + by, 28 -
4.5 Mrad at -80° £ 5° C 0.79 £ 0.06 78
Thermally processed 0.82 £ 0.02 81
Niacin Control 20.3 + 5.1 -
4.5 Mrad at -80° £ 5° C 15.9 + 2.6 78
Thermally processed 13.221.8 65
Pyridoxine Control 0.76 + bO. 05 -
4.5 Mrad at -80° +5° C 0.75 £ 0.07 98
Thermally processed 0.63 + 0.07 84

AMoisture, fat, salt-free basis.

bAverage + 8.D. Three samples per treatment .

Approvals
Those foods which have been approved for commercial production and sale and for un-
restricted consumption are, by country:
Canada: Potatoes
Onions
Wheat, wheat flour
Israel: Potatoes
Onions
U.S.A.: Potatoes
Wheat, wheat flour
USSR: Potatoes
Grain
Dried fruits
Dry food concentrates
Fresh fruits and vegetables
The Soviet Union has the greatest number of approvals.
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Those foods which have been approved for testing of experimental lots or for market test-

ing, by country, are:

Denmark: Potatoes to Greenland
Holland: Potatoes

West Germany: Potatoes

USSR: Onions

Dressed poultry packaged in plastic

Partially processed raw beef, pork, and rabbit products
packaged in plastic

Kitchen-ready meat products (fried meat, steak)
packaged in plastic

United Kingdom: Toods for hospital patients requiring sterile diet

as essential factor in medical treatment (e.g.,
organ transplant recipients)

Here, too, the Soviet Union has the longest list of approvals.
SUMMARY

(1) Ionizing radiation opens a new era for food preservation-the means to extend the shelf
life of foods which, on the plate of the consumer, closely resemble fresh food.

(2) The irradiation process lends itself very readily to the concept of convenience. Irradia-
tion-preserved foods can be offered as components of meals or as snacks in ready-to-eat form, in
the form of slices or sandwiches, or as warm-and-serve or cook-and-serve foods. Foods processed
by ionizing radiation require no preparation or simple preparation with reduction of labor in the
kitchen.

(3) The irradiation process can provide high quality, nutritious, wholesome food of great
morale value to individuals and small groups who are isolated, or where supply is difficult or im-
possible on land or sea, in the air, in space, or under the ocean.

(4) Proof of wholesomeness convincing to health authorities on the national level remains

the number 1 problem to be resolved before ionizing radiation can be used commercially.
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It is certainly a pleasure for me to share in your conference, lead the
discussion of this panel of airline representatives, and represent the Marriott Corpor-
ation. We share more than a passing interest in the aerospace program. Although
known to most of you as the company with the motor hotel at the Manned Space Center
in Houston or the series of restaurants on the Sunshine State Parkway here in Florida,
our Washington based operations stretch from Honolulu to Rome and Boston to San-
tiago, Chile, and cover every conceivable facet of the food-service and lodging field.
Most of you represent some phase of pioneering in the space age and we have been
pioneering in in-flight feeding service for commercial travel since 1927.

The in-flight catering industry presently stands on the brink of a new jet age
that has been described by one aircraft manufacturer as the ""spacious age.”" The sub-
sonic superjets or airbuses and even the supersonic aircraft will be our partners in
the remaining years of this century.

Contrary to some speculation, food service will continue to be an important
part of air travel. The configuration of future meal service and its integral parts will
be different, but so is today's in-flight dining experience different from the 1928 brown-
bagged sandwiches and cardboard lap trays. Our industry needs more technology in
frozen food and reconstituting processes and in packaging, transportation, and onship
handling procésses. Our industry needs to adopt the technology of cryogenics, liquid
freon freezing, radiation, and freeze drying and to make extensive studies in the areas
of reconstitution processes. In the past, the food-service industry has contented itself
in being a follower in technology and discovery. If it is to survive as an identified and
respected member of the business community, it must become a frontrunner and a
leader in food technology.

We must do more to encourage and challenge young people to seek careers in
our industry. Our colleges and universities must attract outstanding men and women
to present curricula to excite the curious nature of the young. Our businesses must
recognize the need for more food technologists and for those in pure research. The
commercial food-service industry is in great need of this tdlent.

~ As your technologies and scientific studies bear fruit in the manned aerospace
program, new areas of imagination will be sparked in the commercial field. New tech-
nology will be launched to improve and build a more efficient and total in-flight food-

service program, geared to the volume and anticipated travel time of the new jet age.



We recently completed a T-acre structure, costing over 11 million dollars,

dedicated to research, technology, and manufacture of quality products for our business.

. Our company - in its research, quality control, and manufacturing process - is making

extensive studies into quality control of its products. We are looking to imaginative
packaging to maintain the integrity of the components. Along with the various airlines,
we will be jointly studying and refining the problems of reconstitution and transportation
of products from manufacturing to storage to in-flight consumption.

We have some excellent men and organizations represented here today. It will

be my pleasure to be chairman during the presentation of their remarks.

RE. Treuchel
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AIRLINE VERSUS SpAceE FEEDING PAUL A. BUCK

Cornell University

The purpose of this paper is to introduce creative ideas for space feeding by comparing
airline and aerospace feeding systems. Use of the metric system to divide the astronaut's day,
primarily in relation to his eating schedule, is discussed.

Universities (and I suggest NASA is similar toa university) as organizations tend to
resist change. Despite involvement with dynamic youth, the aim of a university is to add small
increments of knowledge to existing or old knowledge. Similarly, you and I have so many deeply
ingrained concepts and prejudices about our food that in order to look at a new feeding system we
may need to be jolted. The same "shock' may be needed in order to think creatively of space food.
We speak of space food - but isn't it conventional food eaten in space ?

An airplane pilot, before he takes off, checks the weather, checks the airplane, and
checks the fuel, but have you ever seen the pilot go aft to ask the stewardess if the coffee is on
board? No. He takes it for granted, as it is not part of safety. But for the relaxation of the pas-
sengers and for their mental calm, eating plays an important role.

The airlines realize that you and I buy our tickets partly because of the service that they
provide. The passengers may be a captive audience on board, but at the ticket counter they are
discriminating purchasers. If you are going to buy one airline's ticket in preference to another
airline's ticket, your choice is largely based on the impression that you have from the service pro-
vided. You want a feeling of security when you are on board, so the atmosphere the airline wants
to create is associated with the security of mother's or grandmother's kitchen. The home cooking
concept is an illustration of the kind of confidence you transfer to the pilot and to the airline stew-
ardess. You recognize the food that is served attractively by pretty airline stewardesses, and
this helps to enforce your feeling of security.

In classifications of food service, eight groups of feeding establishments are well recog-
nizable:

(1) Hotels and fancy restaurants

(2) Motels, drive-ins, etc.

(3) Clubs, resorts, etc.

(4) In-plant feeding, cafeterias, etc.

(5) Hospitals, state institutions, etc.

(6) Primary and secondary schools

(7) Universities, dormitories, etc.

(8) Transportation industries
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Although the airline feeding system frequently has been listed under the category of transportation,
to me the proper listing is with hotels and fancy restaurants (category 1) or clubs, resorts, etc.
(category 3). The care that is given to menu selection and preparation, holding, transporting, and
serving of food is similar to that given to gourmet dining. This same care has been devoted to our
space food, even though the emphasis in our space program has been on the engineering phases.

Another similarity in the airline and aerospace feéding systems is in the major factors
considered in the selection of 2 menu. Both systems require careful attention to weight, volume,
preparation, convenience, and low degree of flatulence of the food. Although the airlines are
serving only one or two meals per flight and aerospace food may be eaten for weeks, variety also
is a factor for both systems. For example, if a passenger boards his next flight even a month
later and receives a steak or lobster menu the same as that on the previous flight, he reacts to the
monotony just as the astronaut reacts to 2 monotonous menu.

A third similarity is in the role of food to the physical and emotional state of the person.
Food becomes important to the pilot on long flights so that he will retain acuity. How often does
one shoelace break when you are in a rush? Both shoelaces, except perhaps that one is one thread
weaker than the other, are the same, but you have put more stress on the broken one. Similarly,
a man in an airplane or a spacecraft cannot perform best if he is under tension. Food can be used
to relieve tensions, especially those of a passenger doing nothing, for whom tension may build up.
When you go to a restaurant with only a few minutes for your meal and the waitress doesn't come
Immediately to take your order, and, after she does take it, does not serve your meal for several
minutes, you are under so much tension that you gulp the food and do not appreciate the taste. But
suppose you went into the same restaurant, on the same time schedule, under the same necessity to be
served quickly, and the waitress did just one thing: brought a loaf of bread with a knife and said, "Cut
a piece of bread, your meal is coming, and here is your salad." How much easier it now is to wait
for the remainder of your meal'! How less tense you are! How much better the food tastes!

The astronauts in Mercury, Gemini, and Apollo flights were very busy performing tasks.
As flights become longer, an astronaut will at times be an idle passenger prone to tension. Par-
ticipation in food service can contribute to relieving this tension. The astronaut has been like the
airplane pilot, concerned abo_ut the engineering, yet not realizing that his ability to perform tasks
may depend upon his blood sugar and his state of relaxation. When you tie your shoelace, if you
are under tension, your shoelace breaks.

By film we have watched while an astronaut turned a spoon upside down and the food
didn't drop. Would this have been just as good an experience if the astronaut had turned himself
upside down ? Because we rely on our Earth conventions and expect to use a spoon in a conventional
manner to put food in our mouth, we must be jolted to think about an astronaut’s turning a sommer-
sault to eat the food instead of eating it by turning a spoon over. The reason the astronaut turned
the spoon over to make his demonstration was his Earth orientation, not the space orientation.
Even an astronaut in space carries along these Earth prejudices. We must break through our
Earth prejudices if we plan to develop improved space feeding systems. We must begin fairly soon,

because when there are three astronauts and the pilot and the copilot are busy the third man be-
comes a passenger with possibilities of boredom and tension.
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Another problem is our Earth bound time system; perhaps we should consider adopting
a metric time system. How many breakfasts should an astronaut eat? Should he have a breakfast
every time he sees the sunrise as he circles the Farth? How many luncheons should an astronaut
have on the way to the Moon when he is in sunshine all the time ? Should he have breakfasts, noonday
meals, and dinners? What schedule is followed in Alaska, with its almost 24 hours of sunshine ?
To keep the conventionalism of the U.S., you draw your curtains. Why keep these stateside con-
cepts in our astroaquarium ? Why not adopt the metric system of time and also adopt some of the
pleasures of a siesta ? A proper day for an astronaut might be 4 hours of work and 5 or 6 hours
of rest. He could enjoy relaxation, work, and sleep in a metric system. Let us divide the day
into 10 equal parts and divide those 10 equal parts into 10 to make 100. It is time we started chal-
lenging ourselves to do this. There is still a reason to keep a day and a year, but there is no rea-
son to keep seconds, minutes, and hours. If a day is divided into 10 periods of time, nutritional
snacking may be a very valid feeding schedule. Research with animals indicates that they are
healthier when they eat frequent snacks than when they eat three meals a day.

Further, let us consider the S.Q. of the food - a concept similar to our I.Q. The abbre-
viation S.Q. denotes a partly coined term, 'satisficing quotient, " which denotes the degree to
which the foods are satisfactory in terms of nutrition and are satisfying to the eater. Perhaps
this concept will influence you to think of space feeding in terms of the restaurant industry, in
which we tend to discuss the recreational value of food. The ability to relax or relieve tension
is an important concept when a husband and wife dine in a restaurant. While she is taken away
from the boredom of washing dishes, he is relieved of the tension resulting from the office. Every
good restaurant man knows that you do not come to a restaurant to buy only food. Food bought in
a grocery store and cooked at home is a lot cheaper than is food bought in a restaurant. One goes
to a restaurant because he wants to relax, he wants to be entertained, and he desires an attractive
atmosphere. Relaxation, entertainment, and charm are the "rec' of the word recreation.

If you have ever taken children to a restaurant after they have been confined in a station
wagon for hours, you appreciate the entertainment value of a children's menu, The decor is the
charm. When you take your wife to eat in a restaurant you go to a place that has a bit of charm.
The atmosphere and aesthetic value are important concepts for space food and in the space age we
can have concepts of charm. The charm can be accomplished not just by candlelight; it can be ac-
complished by the food. A dry sandwich is not charming, but there is something charming about
a snack of a well-prepared chicken leg. The taste of a chicken leg from the refrigerator with a can
of beer is scrumptious.

Entertainment need not be a miniskirted stewardess, although that is excellent entertain-
ment. It can be that participation that you and I enjoy when we barbecue. In fac‘t, give a husband
the challenge and he will continue barbecuing even though it starts to rain; he will even drive the
car out of the garage to continue barbecuing. Gathering around the barbecue pit is entertaining.
The astronaut also needs 'rec” entertainment in his feeding system. We can give the astronauts
the entertainment of spreading items on bread. T[understand that in the next Apollo there will be
cheese to be spread on crackers. Let us give the astronaut this opportunity to participate. Snacks

are popular because reaching in the refrigerator and making your own selection is participation.
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With the metric system, we will not be bound to breakfast every time the sun rises, or to
Iunch because it is midday. With the metric system, the challenge of new ideas can be carried
into the food. Our job as scientists is to be concerned with nutrition, but this is not the astro-
naut's job. The participation, the relaxation, and the entertainment lead to the challenge of nutri-
tious snacks. All of us, including myself, must accept the challenge to think of space food instead
of conventional Earth food in space. As we start thinking of space food, we realize that it is no
longer the three meals that we are so accustomed to on Earth. When we leave this conference per-
haps we can do more than just lightly talk about the metric system. Perhaps we can use it to think
of space food. Iam not advocating champagne flights, but to me food without beverage or food
without some gourmet aspect of participation will not produce a good feeding system for aerospace
travel.

The hospitality that you and I cultivate in our homes is the thing I am asking you to think
about in terms of our space feeding system. It is my personal belief that risks of aborting mis-
sions increase if we ignore food. Insurance companies tell us that we cause accidents when we
are under tension. If we are going to prevent accidents, we must work as a team and consider

food an important part of the whole system.
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PAN AMERICAN WORLD AIRWAYS: J. P. TREADWELL
PRESENT AND FUTURE P[_ANS Pan American World Airways, Inec.

"Welcome Aboard Flight 1 to London! Our flight time today will be 3 hours, and, immedi-
ately after takeoff, we will be offering cocktails and dinner. Included in your choice this evening,
may we suggest a dehydrated, low-residue, easily disposable, unappetizing, and misshapen meal.
Water guns on request.'' What's wrong with that ? If it is good enough for the astronauts, is it not
good enough for us in the airline industry ?

How is the airline really different from space travel ? It doesn't have a gravity problem:
it is not in a zero-G situation. There are not the particularly long missions which the astronauts
face, but in some ways there really is no difference. We of the airlines must also design our
systems with space in mind. I am not falking about astronomical space; I'm talking about space in
a capsule or space in an aircraft. We certainly must take into consideration weight and packag-
ing and must utilize research in all possible fields. Let us look at the airline. What is our im-
mediate future and how can we benefit future food systems whether they be weightwatcher or weight-
less ?

Professor Buck mentioned in great detail some of our prejudices, and I will not linger
on these except to say that food is indeed a creature comfort. ''Creature comfort” is not my term
but one that has been used by psychologists to tell us that people and their habits cannot change as
quickly as can their technology. We would like to throw our prejudices out of the window and say
that we are free of them, but we cannot. So.we must live with them, try to bring favorable ones
into our everyday lives, and, in that way, hopefully add Professor Buck's ''rec' (relaxation, en-
tertainment, and comfort).

One of the basic differences between the airlines and space travel is that, at least at this
stage, the airlines are selling something, and we need to pamper people in order to sell tickets.
What kind of creature comforts can we provide ? I shall discuss this from the viewpoint of the
747's. How many seats do you suppose that opening announcement I made would sell ? None. Food
is not something that is just eaten. It's also seen, and it's felt, and it's heard. It is a textured
item and we are used to it in its current earthbound form.

Let me tell you a little about Pan Am. We started producing frozen food in 1950. We
were forced into production by an operational need of moving meals from New York to Karachi or
Beirut where the quality of food wasn't what we had hoped it to be. We've progressed beyond that
now; last year we produced 11 000 000 meals in our two frozen-meal kitchens, at New York and
San Francisco. We meet the volume demands and the demands of the latest technology. Many
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people have said, "You have the big jets. How are you going to handle all those people on an indi-
vidual basis ?"" This is indeed a big problem.

Let us consider Kennedy International Airport alone because it is our largest station. In
1973 we plan to have at one time at one terminal building eight 707's and six 747's during a peak
hour. This means we shall have about 3300 passengers per hour. It will indeed be difficult to cater
to this large number.

We've found that the public doesn't really understand that the creature comforts are going
to be vastly increased on this airplane. Seat spacing is going to be increased; the humber of aisles
1s going to be increased. All the compartments are going to be color coded and segmented so that
a passenger can get his baggage much quicker, he can board much quicker, and he can sit down
much quicker. He will have space to put things. He won't find that his bag is 2 inches too large to
shove under his seat and be told by the stewardess that he can't put it in the hatrack. All these
things have been taken into consideration through the learning curve of our previous experiences.

We are dealing with the same things the space industry is. We are utilizing the poly-
carbonates (Lexan) in our galleys for light weight. Titanium is used in the engines. We are even
considering plastic wine bottles which save 40 percent in space and weight. Tetrapak liquor seems
unappetizing but the packaging geniuses make it an attractive and "entertaining' package.

The 747 will have six galleys, and we are going to feed 350 people at the same time. Each
galley complex, of which there are three, has an average of 52 sq ft of galley, which is quite small.
We shall have 9 ovens and 10 coffeemakers, and 15 000 pieces of equipment will go on and off each
airplane at each transit. This is a logistic nightmare.

Think ahead to the time when volume will be a problem not with astronauts but with
people, the general public, traveling between planets, to the Moon, and so forth. Granted that it
is stargazing, but are we not really moving in the direction of volume ? Well, if there were ever
any lesson to learn about volume, we are going to be learning it, and I hope not the hard way.

The modular concept and containerization are here aﬁd are being used and, although these things
are not of immediate importance to the Apollo program, they are lessons that I think will be of
benefit eventually to your industry.

We find that people psychologically relate to airlines as in the Pavlov's dog experiment.
They board an airplane in January and have chicken; then, a year later, after 364 days of meals,
they board another airplane and have chicken again. What happens ? We are considered a chicken
airline; they say we have nothing but chicken onboard. The problem is simple to identify but not
so simple to solve. My budget this year for food and supplies alone is $ 43 000 000 and that is to
be used not only for chicken but for all the foods we put aboard. At this point we use about 90
different entrees to try to satisfy the palate, and by the palate, as I mentioned before, we mean not
only the mouth taste but also the texture, the sound, and the sight.

Another approach is that referred to as "demand" type food service. The same enclave-
ment, so to speak, that the astronaut is faced with, i.e., being rigid in one seat for a long period
of time, faces our passengers to a lesser degree. Take, for example, the 302 economy passengers

in the 747. They are trapped and are a captive audience. We have been finding out through studies
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that passengers do not necessarily want to eat when they are told to eat. They may not want to eat
when the stewardess is ready to serve them, so we are creating what we call "demand" food ser-
vice, i.e., a system to allow the passenger to eat when he wants to. It could also be called a snack
service.

On the 747 on our Polar flight which goes from San Francisco to London, or from Seattle
to London, or from Los Angeles to London, we will be serving at a full configuration 1000 meals
in 12 hours. What kind of automatons are going to be able to do this ? What happens to the old chef ?
What happens to the skilled worker ? Today, we have 3600 stewardesses. Can you imagine the
degree of variance of food preparation if you were to hand them a recipe that started from scratch ?
No, we must give them a convenience food that is foolproof. Our stewardesses are very well pre-
pared but the same degrees of difference occur in those girls that occur in every one of us here in
this room. Each will do things differently, so we must be sure that our technology designs foods
that can be prepared by somebody who is not a culinary genius.

For this tremendous volume of frozen meals that we have been discussing, we must de-
sign basic sauces, of which there are about 6, and create up to 1100 variations through food flavor-
ings, while maintaining the psychological presentation of the food and at the same time using some
of the latest protein products. We want to increase the amount of protein that the passenger gets,
because more and more people are becoming weight conscious and more and more people are be-
coming less active. So fish protein and basic sauces in a convenient prepackaged form will be
used. Containerization will solve some of the logistic problems of frozen food. Then, as the vol-
ume increases, we will need lightweight, one-way, insulated shipping containers.

Some other products with which we are working include high-heat plastics, which provide
food containers, or plates, that are disposable, lightweight, and low in cost and will withstand
temperatures of up to 600° F. Also being considered is a high-heat, polyethelene, moisture-proof
material which can be placed in a dry-heat environment (600° F).

In short, ladies and gentlemen, there necessarily must be many interfaces between your
technology and our technology. Volume factors affect passenger travel, whether in the atmosphere

or in space.
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JAPAN AIrR LINES: TOSHIMITSU IKEGAMI

PRESENT AND FUTURE PLANS Japan Air Lines

First I shall, with the help of a few statistics, give and define the present food planning
policy of Japan Air Lines. Second, Ishall try to explain what is perhaps the primary motivating
force behind the final selection of our menus; and, third, I shall briefly state our future aims.

Our food service policy, at present, is to serve Western style food as the principal or
main diet because of its universality. Japanese food, our national diet, is served as an additional
or alternative specialty.

From April 1, 1968, to March 31, 1969, we spent $4 000 000 for the main or Western
diet, $560 000 for Japanese food, and $1 560 000 for beverages and other subsidiary foods. To-
gether these expenditures amounted to 33 percent of our total transportation service expenses for
international flights. Currently we have flight routes across the Pacific and Atlantic Oceans, to
Southeast Asia, to the Middle and Near East, to Europe via both the Polar and Southern routes,
and to the Soviet Union.

Our food service plan consists of two elements: a "meal plan’ and a "menu plan.” The
meal plan is used to determine which meal - breakfast, lunch, dinner, or snack - is to be served
and the order of service along every flight route. The menu plan determines the components of
each meal.

In principle, we have six different menus for each meal at each meal loading station and
these are rotated. However, these menus may be and are modified to suit the general tendency of
diet preferences of our passengers. This is done in the belief that in general we are not in a posi-
“tion to dictate the meaning of "good food" to our passengers. On the confrary, we feel obligated
to comply with the tastes of our passenger as much as possible, in order to make his short sojourn
with us a pleasant one.

It is on this note of service that I would like to introduce what is perhaps the primary
motivating force behind our food planning service. The essence of this force or attitude is captured
in the Japanese phrase 'furusato-no-aji." Translated directly it means "a taste of food of the na-
tive land." As implied, this phrase has a nostalgic connotation and is often used to describe the
feeling that a man who comes from the countryside but now lives in the big city gets when he eats
some food, the taste of which triggers a flood of memories of a dish prepared with simple typical
local food materials and cooked by his mother in her own and simple way. However, to those of
us who study food service in Japan, this phrase has a broader meaning. It is used as a symbolic

term to express the strong conservative nature of an inherent diet habit of either an individual or
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a nation. Of course, a diet habit may gradually change, at least on the surface, as in the case of
an individual who changes his place of abode or occupation. This, in turn, may be reflected in
nations that absorb foreign cultures and blend them with their own. But, despite changes, one's
furusato-no-aji remains, albeit subconsciously, and from time to time this feeling surfaces, par-
ticularly in extraordinary situations. An example of such a situation is the following: In Japana
hospital gives a person recovering from a serious illness a nutritious well-balanced modern hospi-
tal meal, but sometimes the patient rejects it, preferring instead a bowl of plain white rice gruel
with a piece of dried plum. This simple meal has in many cases served to spur the patient on the
road to full recovery. This same simple meal may have been given to him by his mother in his
childhood when he suffered from dyspepsia.

Today more and more people are traveling by air. For a great many of them flying and
going abroad present a new experience - a time of heightened excitement. To one passenger, this
excitement may manifest itself in the excitement or tension created when he contemplates the new
experiences he will encounter - different people, customs, languages, and situations. To a per-
son on his way home, this tension may be a result of the accumulated fatigue produced by a heavy
business or trip schedule.

One of the human elements which is readily influenced by such tension, as you well know,
is the appetite. Tension spoils one's regular appetite, and here we would like to suggest that
furusato-no-aji surfaces to one's consciousness. I can point to quite a few Japanese friends who,
though thoroughly accustomed to a Western style diet, in times of tension dash for the nearest
Japanese restaurant if one is available upon landing in a foreign city. I also have an American
friend who under similar circumstances feels a strong desire for a good old American style ham-
burger.

I know that we do make - I hope infrequently - mistakes because of improper preparation
or service of food which incurs passenger complaints. However, today I find that one of the great-
est and perhaps the most important reason for passenger dissatisfaction with in-flight meals is the
gap that exists between the food we offer and the food each passenger expects consciously or sub-
consciously according to his own or his nation's peculiar diet habit. If our food happens to divert,
even partially, from our passenger's expectation, he might show not only displeasure but also a
strong negative reaction against the whole meal. Use of the best quality nutritious food prepared
in the fanciest fashion will not solve this problem. Rather, a totally different approach must be
used.

Of course the ideal in-flight food service plan would be one wherein the furusato-no-aji
of each individual passenger is met. We should have the diet history of each passenger, dating
back to his childhood, showing the food he liked and how his mother prepared it. But this, of
course, is a practical impossibility since in-flight food service is a form of mass feeding, within
a limited time and limited to the facilities of an airplane.

We, however, are at least able to survey carefully and analyse the different historical
and cultural backgrounds of each nation or country; and with this information we can attempt to

grasp an individual nation's peculiar diet habit so that we can meet our passengers' satisfaction

113



by preparing menus either to comply with, or, more importantly, avoid conflicts with his
furusato-no-aji.

Take, for example, the American dish of ham steak and applesauce which is served as a
main dish on our lunch or dinner menus. American people are able to enjoy in combination the
taste of ham with the sweetness of applesauce. However, to the average Japanese such a combi-
nation is unpalatable. You probably would have the same feeling for a combination of dill pickles
with ice cream. We therefore serve ham steak with applesauce to our first-class passengers
along with two or three other choices. This dish is included only on menus of our trans-Pacific
flights where, in comparison with our other routes, the ratio of American to non-American pas-
sengers is quite high. Accordingly, we do not serve this dish in the economy class on any route
where no alternative dish is offered.

Another example is that beef steaks prepared out of Tokyo are prepared on the well-done
side of medium because our statistics show that the majority of passengers outbound from Tokyo
prefer their steaks this way. On inbound flights leaving Europe's gateway cities, steaks are pre-
pared on the rare side of medium because of the opposite trend indicated by statistics. In order
to cope with the sense of furusato-no-aji of our own Japanese passengers, we are promoting
Japanese food service with more varieties than ever, especially for flights returning to Japan.

Two years ago, we started to serve Japanese food as a part of a regular Western style dinner course.
A Japanese dish was offered as one of the choices of the main courses for first-class passengers.
Today, not only Japanese passengers but many non-Japanese passengers as well enjoy Japanese

food. The latter try Japanese food because they find it both fun and adventuresome to try something
different in addition to their traditional native foods. We sincerely believe that such a delicate con-
sideration of the various diet tendencies of passengers based on cautions observation is essential to
maintain good in-flight food service.

As for our future aims, we shall of course continue to grow technologically. We shall re-
vise serving procedures such as food preparation in the flight kitchen and loading methods on the
ground to cope with the demands the Jumbo and SST age will usher in. However, in the area of food
selection and service, where today such things as filet mignon by tube or cream of mushroom soup
by tablet are in vogue, we shall remain conservative. By conservative, I mean we shall continue to
meet the needs of our passengers and present foods prepared and served in a manner that will in-
deed make aeroflight dining a pleasure. We shall continue to try to meet the spirit - if not the
letter - of the Japanese phrase furusato-no-aji which again translated directly means "'a taste of
food of the native land."

In closing, let me be so bold as to suggest that this spirit be incorporated in the planning
of your astronauts’ aerospace diet. I hope I have given you some food for thought.
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Dr. Chichester, who is the Chairman of the Space Nutrition Panel of the
Space Science Board, was to have welcomed you in the name of the Space Science
Board, National Academy of Sciences, but he is unable to attend and has asked me to
welcome you in his plaée.

This is the second meeting that the Space Science Board and NASA have col-
laborated in at the University of South Florida in the last 4 years with the objective
of improving the diet for our spaceflight crews. I feel that the meeting we had here
4 years ago was very useful and one from which the space program derived definite
benefits. However, we cannot stand still in the field of nutrition research, and,
since our country has made considerable progress since 1964 along this line, I think
it behooves all of us in this field to provide the best information available for the
programs of the future. I believe we should continue to emphasize the importance of
continuing national research in the field of nutrition and nutrition technology. Already
certain advances made in some aspects of nutrition and food handling have resulted in
benefits for everyone. It appears probable that knowledge gained in the studies the
space agency has undertaken may even prove of value in the war against hunger.

Herbert Shepler




Foop DEVELOPMENT ROBERT M. WEISS
AND EXPERIENCES The Pillsbury Company

The food industry, in support of the special nutritional requirements of the aerospace and
military programs, has conducted much research which has resulted in the evolution of many dif-
ferent products. Iwould like to share with you the results of some selected research undertaken
by The Pillsbury Co. Further, I hope to encourage all of us to reevaluate our individual and collec-
tive technical information (especially spinoff technology) to determine the way in which it might be
used as a baseline in solving future aerospace nutritional problems.

In 1966 The Pillsbury Co. undertook a research contract to create a rod-shaped contin-
gency food designed to sustain a flight crew when they must remain sealed within their pressure
suits. This effort resulted in the delivery of 12 different flavors of 4 different types of rod-shaped
foods in the fruit, vegetable, meat-analog, and confection areas.

During the course of the research, much information was generated governing the manner
in which the physical structure of food materials could be controlled. Materials from soft plastic
to hard brittle and from a smooth texture to a chunky texture were developed without varying the
nutritional value. Further, through the selection of special ingredients and formulas, properties
such as water activity could be modified to meet desired end requirements. This effort resulted
in the delivery of a low-cost, highly stable, reasonably acceptable, unique food form.

Beginning in 1962 and continuing to the present date, we have been involved in the creation
of a wide variety of compressed food bars. These compressed bars, the principal compone~ts of
which are natural foods, can be combined with one or more other compressed bars in variable
ratios, the result being a wide, individually tailored menu array. Further, accessory flavors in
the form of small cubes allow the modification of base foods to individual taste preferences. Some
of tﬁe bars may be eaten both in a rehydrated form and as is, thus providing for greater texture
variability.

An obvious problem of the dual-function bar is the high flavor intensity of an as-is bar
as compared with that of its rehydrated counterpart. Current work has shown that flavor-
contributing components can be effectively encapsulated within materials of controlled solubility
in such a manner that both food forms become highly palatable. In fact, such highly seasoned
foods as chile con carne are more bland in the unrehydrated form. Compressed foods provide an
opportunity for achievement of extremely high nutritional densities while continuing use of a high
proportion of natural foods.

Currently in excess of 5. 75 Kcal/g can be provided in a hydratable bar. Because of the
low bulk of this food system, an individual can be sustained at a daily caloric intake of approximately

117



2500 cal for a period of 7 to 10 days from a food storage container no larger than an ordinary

shoe box. Although this food is being primarily designed to meet military requirements, it has
become a food form worthy of consideration for aerospace use. Nutritionally variable edible coat-
ings and binders provide physical strength and erumb contamination control while, in addition,
allowing the food scientist to strengthen nutritional deficiencies of the natural foods embodied within
the bar.

Recently completed taste-panel evaluations have shown a high degree of acceptability for
all of the 46 meal items currently under investigation. The level of acceptance, as recorded on a
9-point hedonic scale, is shown by scores of 6 or better given by more than two-thirds of the
taste-panel members. The average of the mean hedonic ratings of the foods currently under evalu-
ation is 6.7, as compared with an average of 5.9 for the food bars developed in 1967.

We also undertook the development of a low-cost process for manufacturing bite-size
foods, primarily in the bakery and cereal food areas. This effort required the application, and in
some instances modification, of previously developed technologies plus the evolution of some new
techniques. For example, the protein-encapsulated vegetable-oil—carbohydrate dispersion, which
provided the base for rod-shaped foods, was combined with specially prepared cereal and bakery
ingredients in such a manner as to create a formulated food in a recognizable "natural" form.

The technique which evolved allows for the creation of a wide variety of flavors and textures in
any desirable shape from a single-process system.

The material normally used for coating was used as a binder integral with the other food
components. The danger of capsule contamination by broken food can therefore be greatly mini-
mized. This nutritionally balanced food form has a caloric density in excess of 4 cal/g.

Another interesting food development project, although it was not related to human foods
on the surface, at least, was the development of a primate diet in pellet form. Prior to our in-
volvement in this ongoing program, the pellets were prepared by compacting the specified ingredi-
ents by means of standard high-pressure pelletizing techniques. Since this pellet is dispensed
from a mechanical feeder not sealed from the spacecraft environment, very rigid specifications
were imposed upon the manufacture of this food. Some of these specifications were as follows:

1) ‘The pellet was 3/4 1 0.020 in. square, with a thickness dimension of 0.190 to 0.205 in.; (2)

it must have a breaking strength in excess of 15 Ib when center-loaded between knife-edge supports
1/2 in. apart, and (3) when dropped 6 in. for 120 times upon a honresilient surface the weight loss
must be less than 1 percent. All the above parameters were to be maintained throughout an am-
bient atmosphere spectrum of 40- to 72-percent relative humidity and 35° to 80° F.

It had been concluded after many months of effort prior to our involvement in the program
that standard pelletizing techniques could not successfully meet these specifications. The current
pellet is manufactured by adjusting the pH of the casein in the diet to put it in a water-dispersible
form. This material is then complexed with sucrose, vegetable oil, and some of the vitamins and
spray-dried in a special low-temperature drier. This processing results in a powder containing
less than 2 percent moisture. When combined with the remaining vitamins and minerals in the
diet, it can be pressed into dense, homogeneous pellets meeting, or exceeding, all the required
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performance criteria. Dimensional tolerances, for example, are now maintained within 0. 005-in.
variance.

My only reason for including this example is to demonstrate the opportunities available
to food scientists if they look upon their ingredients as modifiable organic and inorganic chemicals
rather than as material for use "as is." I feel the major import of this kind of research is the
realization that a food form readily recognizable and acceptable by the consumer can have radi-
cally modified physical characteristics without sacrificing any of the nutritional criteria.

Another interesting aspect of this work is an indication that vitamin viability has been
maintained throughout the high-temperature, high-moisture storage period at original formula
levels. This may be due in part to the highly impervious character of this particular food. Addi-
tional research has shown that this food can be modified (again without nutritional compromise) to
have textural variations ranging from those of soft caramels to glass.

This is obviously but a part of the total food technology that has been evolved in support
of special feeding needs. What then of the future ? Greater and greater demand will be placed
upon the food and packaging technologists to create human food compatible with long-duration mis-
sions. We all realize the final approach will be a considerable departure from existing foods and
processing techniques. Simultaneously we must create demonstratable improvements in accept-
ability of these foods at their point of consumption. Some examples of possible ultimate results
from our efforts are:

(1) Extremely low-residue foods aimed at near-zero fecal loads

(2) Near-zero packaging requirements

(3) Foods containing selected microorganisms or designed to control or modify in-
testinal microflora in a manner to give desired end results

(4) Foods that may, because of their fibrous, plastic, brittle, liquid, or other physical
characteristics, be used as structural components of the space vehicle prior to their use as
human fuel.

We have heard a call for more natural food because history has shown that these foods
have greater acceptability. Is not the desired end product more naturally acceptable foods ?

That is a much broader concept. Manmade foods can be designed to avoid the many limitations
imposed by so-called natural food. The final system will undoubtedly be a marriage of many forms
of human fuel. As we embark upon any program of human-fuel research and development, let us
stay sufficiently broad in our approaches to stimulate real creativity. Time constraints have always
been a convenient excuse for not stretching for truly new approaches. I suggest we use tfime and

money constraints as a stimulus to our creativity and a challenge to the quality of our results.
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MeaT-TyPe-Foop DEVELOPMENT R. L. PAVEY
AND EXPERIENCES Swift & Company

The efforts of Swift & Co. in the development and production of space foods have been
geared mainly to problems of production rather than to development of new meat-type items. Con-
stant efforts have been made toward improving product quality in regard to safety, nutritional
value, and physical characteristics for our astronauts, while also improving production rate and
end-item uniformity.

Meat items and some other ingredients used in their production are highly variable in

composition. This is especially true of the water content of meats and vegetables. In the case of

_meats, which are the main components of our products, the fat content is highly variable within the

same grade and cut of meat. This fat content is difficult for even an experienced meat technologist
to judge to a figure closer than 5 percent. Since water content is inversely related to the fat con-
tent, it is very difficult to control the dry-matter content and, therefore, the dry weight of meat
space food items. A fat-content variance of +5 percent (e.g., 10 percent rather than 15 percent,
or, in the other direction, 20 percent) would result in as much as +5 percent variance in dry-
matter content. Since approximately 100 g is the wet weight of a meat-type meal unit, this re-
sults in approximately a +5 g variance in final product weight.

During Project Gemini the product was cut to a physical dimension which could be fairly
well controlled and it was attempted to minimize the weight variance by precisely judging fat con-
tent of the meat used. However, variances of as muchas 5 to 6 g in final product weight occurred,
and in many cases products had to be reprocessed to meet weight requirements.

During the latter phase of Project Apollo, permission was obtained to cut products to a
dry weight rather thanto a physical dimension. The reason for this was that weight was considered
more critical than dimension, in that weight was very closely related to nutritional factors. Pro-
ducing meal units having prescribed dry weight requires that dx_'y—matter content be determined
on each product lot produced prior to cutting the bars in order that adjustments can be made in
weights by varying the thickness of the products. This has greatly helped in achieving more uni-
form specified product weights but not necessarily more uniform nutritional content, except for
calorie value, which is more uniform to some degree. In order to provide a high degree of uni-
formity in nutritional value, all ingredients used which are found to be highly variable in nutritional
content would have to be predetermined and adjusted prior to preparation. This would be extremely
costly because of the production quantities required for each production lot. A 30 kg batch on a wet-
weight basis is considered a gigantic order. A 10- to 15-kg batch is closer to the norm. Preparing
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such a small production batch is extremely costly because of the high costs of labor for preparation
and cleanup, inspection, and maintenance in relation to returns for a small number of items. Such
a procedure is also time consuming. This is critical when one is working with a very highly perish-
able product such as meat.

Much thought and effort have been devoted to reducing production costs and improving the
uniformity of products. These efforts have been severely limited by the very small volumes of
production required, which do not lend themselves to automation or Justify equipment development.
During Project Gemini, almost all items were basically individually handmade.

Sandwiches were made in the conventional manner by using an individual sandwich mold to
provide proper filling thickness. They were then individually dipped in gelatin and cut by hand one
at a time into bite-size pieces. It was possible to cut 6 to 9 bite-size sandwiches from one large
sandwich, the number depending on the shape of the slice of bread and the number of holes in the
bread. Bread with fewer holes, especially made for sandwich preparation, is now sliced length-
wise rather than across the loaf in the conventional manner. This reduces the time required in
making the sandwich and 39 to 42 bite-size sandwiches can be cut from each large sandwich by using
a three-unit stamp cutter. Coating of the bite-size sandwiches, however, is still a one-by-one pro-
cedure.

In the case of meat bites, the product formula was initially layered in trays to a depth
equal to the thickness of the bite required. After chilling, the product was cut into bites by hand
using a crude cookie-type cutter. This, of course, was slow, and in many cases the bites were
highly variable in thickness because of trays that were not level or errors in layering the proper
thickness. There was also a 30- to 40-percent loss of material because of rounded corners, mis-
cuts, etc. Currently the material is molded into logs of proper height and width and long enough
for 30 bites to be cut from each log with a saw after the product is frozen. This has greatly increas-
ed the rate and efficiency of production, and weight can be adjusted by varying the thickness of the
bites. These bites must still be coated by hand on a one-by-one basis, however.

Rehydratable bar products were initially prepared by weighing each component into a can-
type mold, mixing these with a spatula, and freezing. The frozen product was removed from the
can and three bars were cut from each mold. The total formula is now premixed and molded into
logs of the proper width and long enough for approximately 24 bars to be cut from each log. This
results in more uniform mixing and reduces the labor in mold filling, removal, and cutting. The
weight of the bars, on the basis of predetermined drying yields, can be adjusted by varying the
thickness of the bar being cut.

Perhaps the greatest improvement in rehydratable products has been in the use of textured
beef and chicken. This process provides a binding characteristic within the meat piece which re-
duces the shredding or falling apart of the meat when it is diced into small pieces. This, in con-
junction with an increase in the size of the mouth piece of the rehydratable pouch which permits an
increase in the dice size of the meat particle, has resulted in a larger particle size. This process,
we feel, has greatly improved the eating characteristics of these items, especially in the case of
chicken products.
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There are three future areas of research for improving these food items that are believed
to be worthy of considerable effort. The first, and one in which it is believed much improvement
can be made in a relatively short time, requires a critical look at flavors or spice levels in exist-
ing rehydratable items. It is believed that these items cbuld be made more tasty simply by altering
the levels of their spices, by modifying the spice formula, or, perhaps, by modifying some process-
ing procedures. This, however, would require a considerable amount of preparation and testing.

It is not believed necessary to freeze-dry and rehydrate these items for this purpose until after any
major changes are made. It is proposed that the initial evaluation and recommendations be per-
formed by a professional profile panel. After the major modifications have been made it is also
believed that our astronauts should be permitted to evaluate and make recommendations on these
products before a final formula is established. Again, it is believed this could be done without
freeze-drying and rehydrating as long as processing is done in the same manner as that to be fol-
lowed in production. It must be granted, however, that some flavor loss or alteration does occur
during freeze-drying. Perhaps it may be possible to provide means for the astronaut to spice his
own food to suit his own taste.

A second area worthy of consideration follows from the new concept of spoon and bowl
feeding. This should greatly affect factors such as particle size and consistency of the products,
and it may affect other factors relating to food preparation and formulation. It appears highly con-
ceivable that grilled steak, pork chops, and ham could be prepared and consumed in this manner
although such items have not been used before. It is proposed that these possibilities be investi-
gated. Such items should greatly enhance mealtime in space.

A third area that I consider worthy of investigation is the concept of using the intermediate
moisture or moisture mimetic agent foods to replace or improve the acceptability of the current
very dry and fragile bite-size meat items. These moist items would also provide a much higher
weight and caloric density than do our current bite-size items. This concept could be applied
toward new items or to improvement of our current items. The use of such a concept should great-
ly improve the mouth feel or texture of the product and also provide improved flavor character-
istics. It is conceivable that these products can be compressed or extruded and, therefore, would
be more uniform in physical dimension and weight. Such items may or may not require a coating
to be applied to the outside surface to prevent crumbs. It is also conceivable that these products
may be provided not only in bite-size cube form but also in strips or sticks which would permit
the astronaut to bite off and chew a part of the material and not be forced to place the entire piece
in his mouth before chewing. In this way he could adjust the size of the bite to suit himself.

My remarks in regard to our current efforts and proposed future efforts for space feeding
are now concluded. I feel that great strides can be made to provide more enjoyable mealtimes for
our astronauts in the future and that such will result from this conference.
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GENERAL Foops CORPORATION PRODUCT BEN F. BUCHANAN

DEVELOPMENT AS RELATED TO .
General Foods Corporation

AEroOSPACE FooD PROBLEMS

Although General Foods Corp. has had no direct contract responsibility in the NASA food
development program, we accepted the invitation to participate in this conference because we felt
that some of our experiences in the development of new food products might be of interest and bear
some relevance to some of the aerospace feeding problems. Part of my message is well exem-
plified in the sentence, "The need for long lead time for future manned aerospace flights and world
needs present and future is evident.”" We might add two further needs which must always be a part
of any food-product development program, namely, recognition of the voice of the consumer, and
adequate funding to attain the objectives sought.

Before we become specific about food products let us review some facts relative to the
food business and the relationship of new products to the vitality of a company. The food business
is the largest business in the world, and quite logically so, since every individual needs, above
everything else, food to sustain life. (In this context water is considered to be a food.) An ade-
quate food supply represents strength to the individual, strength to the nation, and strength to any
endeavor involving man. In the United States alone the consumer food budget is over 100 billion
dollars per year. Of this, 40 billion is in the fresh-food category (meats, milk, eggs, and vege-
tables), and 60 billion is in processed foods. About 22 billion dollars worth of the processed foods
are perishable; the remaining 38 billion is for the shelf-stable processed foods. It is this last
classification to which we will address ourselves primarily.

A viable, prosperous, growing food business requires constant new product development,
product improvement, process development, and process improvement, and these efforts are
supported by an expenditure in this country of over 400 million dollars per year in research and
development. Satisfying the demands and needs of the consumer and maintaining growth in a food
company requires a constant flow of new products. Fifty percent of the items on the supermarket
shelf today were not there 10 years ago. The profitable and useful life of a new product follows the
traditional curve shown in figure 1, from which it is evident that new products must be brought to -
market continuously year after year to sustain company growth from new products.

Many new product needs come from the consumer. It is the consumer whose wishes and
desires must be satisfied, and the development of a new product should always give a high priority
to the voice of the consumer. These needs are then translated into new product ideas by the tech-

nical researcher. New product ideas may also originate with other personnel of a company such
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Figure 1.-New product development cycle.

as market researchers, salesmen, or purchasing personnel, or come from government labora-
tory research, university research, and consulting laboratories.

It is interesting that the most compelling reason for selection of a new food item by the
consumer is the desire for variation and change, with convenience running a close second. These
two congiderations account for almost 50 percent of the reasons for choice of a new food item.
Next come taste and flavor and then curiosity, which account for another 30 percent. Other rea-
sons include "because it's new, " and expectation of good quality, price, better packaging, and
free samples. Of interest is the fact that the consumer selects an item 'to please the family' less
than once in 200 selections of a new food product. Nutrition rarely ever shows as a reason; this
means that the food company must build nutrition into its products as an incidental acceptability
factor.

Because of the high mortality rate of new product ideas, many must be reviewed, eval-
uated, and sometimes reevaluated to produce one winner. On the average 60 new product ideas
are needed to result in one successful marketable product. Of these 45 are lost in the preliminary
screening, 8 more during concept testing, 4 in the intensive research and development stage, and 7
2 more at the test market stage, thereby leaving only 1 which reaches national distribution. In-
cidentally, about 40 percent of the total costs are consumed in research and development by the
time the one product reaches a successful market distribution, a fact pointing up again the need
for adequate R&D funding.
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Recent trends in new product development have been in the direction of technically designed
foods, that is, foods specially fabricated to meet certain consumer demands, storagability require-
ments, packaging and transportability characteristics, etc. Instant banana pudding is an example
of such a product; it applies the concepts of a highly popular flavor with convenience. An instant
fruit-drink mix offers the consumer a shelf-stable, uniform, nutritious, acceptable fruit-flavored
drink by the simple addition of cold water. Recent advances in freeze-dried products offer the con-
sumer high flavor acceptability with the convenience of rapid rehydratability. For example, freeze-
dried coffee resulted from over a dozen years of painstaking application of flavor technology with
unique engineering processing techniques to attain the acceptable, marketable product; when instant-
1y reconstituted it resembles as nearly as possible a freshly brewed cup of coffee and makes un-
necessary the time-consuming bother of preparing the brew from roasted and ground coffee. These
samples of technically designed products are just as acceptable, refreshing, and nutritious to the
man in space as to the earthbound consumer and serve only as illustrations of the efforts made to
meet the desires and demands of the consumer. Of high significance in the development of all tech-
nically designed foods is the opportunity offered for carefully controlled, high-quality standards in
the product with precise uniformity day after day and year after year.

One category of technically designed foods receiving much attention recently is that of
intermediate moisture products which must be shelf-stable, ready to eat, soft to the touch, moist
to the bite, acceptable in flavor and texture, satisfying, nutritious, and packagable. Some items
known to the consumer for many years which might be classified as intermediate moisture products
are dried fruits, honey, and maple syrup. Even such a product as catsup, although in the higher
moisture raﬁge, is stable by virtue of its high acidity and salt content. The soft, moist pet foods
recently developed and now in the marketplace represent the application of modern technologies in
the production of highly acceptable, nutritious foods for our pets. These same principles will soon
manifest themselves in the development of human foods and should represent an ideal line of products
for the astronaut.

Similar and closely related is the area of moisture mimetic product prototype development
being pursued by General Foods Corp. along with the intermediate moisture investigations under
partial support from the U.S. Army Natick Laboratories. It has been our objective to treat com-
pressed bars of dehydrated foods in such a manner as to give the impression of moistness when
eaten. It was therefore necessary to add certain materials which resembled moistness in the mouth
yet retained a moisture content in the bar of less than about 2 percent. Selection of such additives
must take into consideration flavor and acceptability along with nutrition, effect on appearance, bulk,
stability, and rehydration. In all cases it has been our aim to limit the additive content to 20 percent
by weight of the bar, maintain 2 minimum calorie content of 4 Kcal/g, and obtain a compressed bar
which is easily sheared by the incisors at temperatures between 30° and 100° F. In addition, this
bar must be chewable without becoming crumbly or difficult to swallow, withstand dropping to a con-
crete floor from a height of 3 ft, and be rehydratable in hot or cold water within a 15-min period.

Examples of additives which simulate moistness are glycerol, honey solids, dextrose,

sucrose, fructose, sorbitol, fats, and oils. In addition, many additives induce salivation, among
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which are salts, fruit solids, and organic acids such as malic, citric, and tartaric. Invariably
combinations of additives serve better than any one alone and the optimum combination will depend
upon the particular food product under study. Obviously, combinations to be used for essentially
meat items would differ from those for vegetables, cereals, fruits, dairy items, or mixed dishes.
In all cases, however, it was found that to obtain best results certain of the salivation-inducing
agents must be used along with the additives which simulate moistness.

It was found that the moisture mimetic composition is best introduced into the compressed-
dehydrated or, frequently, freeze-dehydrated food bar by way of emulsion technology. A typical
emulsion formulation is:

Water ...ttt i e 50
Fats ............ Cr e e s 22
SUCTOSE . v vttt i e e e . 12
Gum arabic........ et et e e 10

Emulsifiers (mono & diglycerides) .... 4

Sodium caseinate ... ... e e 2

Emulsions represent a suitable and convenient means of attaining compatibility and re-
producibility with a wide range of compositions and of serving as a binding agent for the base ma-
terials because their rheological characteristics permit efficient coating of the freeze-dried base
materials. As an example, 80 parts of freeze-dried chicken in %-inch dices were blended with 20
parts of the above emulsion, pressed into bars and frozen, and freeze-dried; the result was un-
usually acceptable dry chicken bars of high nutritional value and high calorie content. A wide vari-
ety of other dry meat, vegetable, and fruit bars having a moist sensation when eaten has been pre-
pared.

To evaluate moisture mimetic foods for acceptability a taste/texture profile panel was
specifically trained to judge prototype samples against similar bars made without addition of the
moisture mimetic composition. To do so a special terminology was developed to describe charac-
teristics of differentiation such as initial moisture sensation, plasticity, amount of salivation, ease
of chewing, crumbliness, cohesiveness of the chewed mass, dehydration of the mouth, ease of
swallowing, stickiness on the teeth, aftereffect thirst, and general palatability. In applying these
evaluation criteria to a number of moisture mimetic bars it was shown that an increase of 2 to 3
points was attained on a 10-point acceptability rating scale over similar bars without addition of
the moisture mimetic agent. For example, a chicken stew bar was increased in acceptability from
a2. 5 ratlng to 5.5, plain chicken from 3.0 to 5.0, and cereal bar from 3.5t0 6.5. These are
surprisingly moist-appearing items when eaten, yet are typically freeze-dried products with moist-
ure content below about 2 percent. Typical products are shown in figure 2.
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Figure 2.-Compressed dehydrated bars containing
moisture mimetic agents.
The foregoing are just some examples of technically designed foods of the future which
are not only for the average consumer but are also for the military and the astronaut, or aquanaut,
since they fit admirably into the rigid projected requirements of stability, compactness, high calo-
ric and nutritional value, convenience, and variety. Much more time and effort is needed to achieve

their acceptance by the critical consumer, but they are on the threshold of reality.
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You have heard quite a bit to date about approved missions, Gemini, Mer~
cury, and Apollo missions. The talks this morning will be relative to potential
future missions which are, as yet, undefined - missions such as Extended Lunar Base
Operations, Space Station Operations, Space Base Operations, and, eventually, Plan-
etary Exploration. In some of these long-term missions which are being planned for
the future, expendable supplies will not be used. Regenerative life-support systems
will be utilized to supply essentials such as oxygen and water. We would like to close
this regenerative loop by also regenerating at least part of the food. When we con-
sider the possibility of regenerating food from metabolic wastes, we do so from two
approaches: (1) By means of physicochemical means and (2) by biological means.
In this context, the first talk will be given by Dr. Jacob Shapira of the Ames Re-
search Center, who will talk about a physicochemical method of regenerating food.

Leo Fogx
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BY PHysicocHEMICAL MeTHODS || WASA Ames Research Center

As space missions become longer and longer, it is obvious that at some point a system
that will at least partially recover useful foods from metabolic products will offer net mission ad-
vantages. A number of predictions have been made as to the mission duration that would be re-
quired before regeneration of food would be expected to result in savings. By using only very frag-
mentary information, the General Dynamics Co. in 1966 concluded that, for a 6000-man-day mis-
sion (i.e., a Mars mission with a 10-man crew), physicochemical regeneration of carbohydrates
would result in savings in weight and volume of the food supply system (refs. 1 and 2). Ina similar

study, the Lockheed Missiles and Space Co. came to a very similar conclusion (refs. 1 and 3).
RATIONALE FOR SPACE DIETS CONTAINING REGENERATED NUTRIENTS

Food in its most basic sense is any substance taken fnto and assimilated by a plant or an-
imal to keep it alive and enable it to grow. The substances themselves, depending upon the source,
are generally very complex mixtures of organic materials and inorganic salts. However, the
major materials required by man are relatively limited in number and are composed primarily of
protein, fat, and carbohydrate.

The protein components of our diet are a large number of complex polymers of approxi-
mately 20 simple organic compounds, amino acids, of which only 8 are essential to a man since
they cannot be synthesized by the body. The minimum requirement for protein has been variously
estimated to be between 50 and 75 g/day.

Fats are mostly composed of glycerol combined with long-chain saturated and unsaturated
fatty acids. Only a few of the polyunsaturated fatty acids are considered to be essential to humans
and they are required in very small amounts, perhaps as little as 1 to 2 g/day.

The carbohydrates in our diet are polymers of relativély simple organic compounds, pri-
marily the hexose sugar glucose. It is not known whether there is 2 minimal requirement for
carbohydrate. However, a diet which contained exclusively protein and fat might be expected to
cause difficulties in metabolism because of the very high nitrogen load and the ketosis associated
with very high fat diets. In addition, our diet contains relatively small amounts of various salts,
nucleic acids, vitamins, and trace elements.

In the typical American diet the major chemical components are as shown in table I. Note
that one-half the calories are derived from the hexoses present in the carbohydrates, about one-
third the calories are from fatty acids in the fat, and the remainder are composed of the amino
acids in the protein and the glycerol content of the fat. The minerals, vitamins, and other com-

ponents of the diet contribute virtually no calories. 133



TABLE I.-MAJOR CHEMICAL COMPONENTS OF TYPICAL AMERICAN DIET

Material Weight/day, g ‘-\ Kcal/day
Hexoses 315 1260
Amino acids 90 400
Fatty acids 90 900
Glycerol _1o _ 40

505 2600

It should be emphasized that it makes no difference to the body whether these substances
come from a food of natural origin or are synthesized by in vitro biological or physicochemical meth-
ods. The main consideration is that the material be safe and acceptable as food.

Equations can be written for the catabolism of food substances by the body. In the case of
(1) protein (meat), (2) fat (tripalmitin), and (3) carbohydrate (starch), these equations on a per mole
carbon basis are, respectively,

@) C1.00M1.67%.22N9. 27 +1-00 O, —0. 80 CO g 7 0-30 HyO + Cpy 9oM1. 079, 32N0. 27

(2) Cl.OO 1.92 0.12+1.42 02—*1.00 COZ+0.96 HZO

®) €1 9oHy. 6700, g3 * 1-00 O, —=1.00 CO, +0.83 H,0

2 ) 2
-A net equation can be written for the catabolism of the diet shown in table I as follows, again on a
per carbon basis:

©1.00%1.74%. 46N0. 05 * 112 0, —=0.94 CO, +0.72 H,0 + Cy . H) 200p (oNo o

It is seen that 94 percent of the carbon of our food is exhaled as carbon dioxide and that
83 percent of the hydrogen is converted to water. Only relatively small amounts of material are
excreted in the urine and feces.

Now let us postulate a system in which the carbon dioxide and water would, by chemical
means only, be converted into carbohydrate. And further, let us postulate that this carbohydrate
would comprise about 85 percent of the diet. The remainder of the diet would be composed of
other esrseqtﬂial‘component’s ‘of the foods more difficult to synthesize such as prdtein, fat, vitamins,
and the like which would be carried along on the mission. Catabolism of such a diet by the body is
shown by the following equation:

C1.00M1.67%.72Np. 4 * 1-01 05 —=0.97 CO, +0.75 H,0 + C (.H 1,00 0570, 04

It should be noted that an even greater proportion of this diet is converted to carbon dioxide and
water than that of a typical diet and that, for all practical purposes, excretion products other than
carbon dioxide and water can be discarded from a regenerative system. More than sufficient car-
bon dioxide and water are produced to permit resynthesis of the 85 percent of the diet which is
carbohydrate. Such a diet containing 85 percent carbohydrate should be safe and acceptable and in
fact may be healthier than the current American diet with its excessive fat and protein.

Serious consideration has been given to the problem of synthesis of protein (ref. 4) and
fat (ref. 5) in the aerospace environment. Unfortunately, it appears that very complicated
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processes will be required for their synthesis, and in all likelihood automatic systems would not

be economical even for long-duration space missions.
SELECTION OF PURE NUTRIENTS

The hypothesis is: certain carbohydrates or carbohydratelike nutrients present in our diets
can be made a major fraction of regenerated food. Any such substance must be safe and acceptable
as food, comprise a significant portion of the diet, and be readily synthesized with high reliability
(ref. 6).

During normal metabolism, large food molecules are broken down to successively smaller
molecules which might be synthesized relatively easily. It was hoped that some of these might be
tolerated when ingested in large amounts. This did not prove to be the case. For example, the
trioses, glyceraldehyde, and dihydroxyacetone which arise from the catabolism of glucose could be
tolerated by rats in only small amounts.

The literature was examined for reports of compounds which could be consumed in very
large amounts for prolonged periods. There are few such compounds. The known toxicology of

one of these, glycerol, is compared with that of the normal blood sugar, glucose, in table II (ref. 7).

TABLE II -TOXICITY OF GLUCOSE AND GLYCEROL

Compound Animal Route LD, mg/kg
Glucose Rabbit Oral 20 000
Glucose Rabbit Intravenous 17 000
Glucose Dog Oral 10 000
Glycerol Rabbit Oral 27 000
Glycerol Mouse Oral 31 500
Glycerol Rat Oral 27 500
Glycerol Guinea pig Oral 7 750

In several species, it can be seen that gylcerol administered orally is probably no more acutely
toxic than glucose, which is known to be highly acceptable as a large percentage of the diet. Other
low-molecular-weight compounds which have beén reported to have low toxicity are diglycerol,
triglycerol, polyglycerol, propandiol, and triacetin. This last compound is the simplest even-
chain fat and arises from the esterification of glycerol with acetic acid.

Glycerol has been administered to both normal and ill individuals in large amounts for ex-
tended periods. In the classical study of Johnson, Carlson, and Johnson (ref. 8), 14 subjects each
consumed 110 g/day of glycerol for 50 days. This amount of glycerol represented about 20 percent

of the calorie requirements of the subjects, and no deterimental effects were observed. In the

same study, animals were fed even larger amounts of glycerol for 50 weeks; again, there was no

evidence of toxicity.
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In recent years, there have been reports concerning the administration of glycerol to over
1000 patients with glaucoma (ref. 9), increased intracranial pressure (ref. 10), and diabetes (ref.
11). Patients have consumed as much as 300 g/day, which is more than one-half their food require-
ment. It is apparent that glycerol can safely be made a substantial part of the diet, whether it
comes from a natural source, such as fat, or is synthesized from metabolic products.

The evidence for the safety of ingestion of propylene glycol, triacetin, and some other
compounds by humans is limited. However, they are generally recognized as safe by the U.S. Food
and Drug Administration (ref. 12). These materials have been tested rather extensively on animals
and there is good reason to helieve that they can also be safely consumed in significant amounts by
humans.

The situation with the formose sugars which arise from the self-condensation of form-
aldehyde is more tenuous. All studies thus far reported indicate that the unpurified mixture causes
a gastrointestinal disturbance when fed to animals. This may be due to the presence of a limited
number of components of the mixture whose formation can be avoided by appropriate choice of
conditions and/or catalyst. Alternatively, undesired components could be removed from the crude
product by fractionation.

SELECTION OF PHYSICOCHEMICAL PATHWAYS

The starting materials available for the physicochemical syntheses are carbon dioxide
and water. There are currently available prototype apparatuses for electrolysis of water in either
the liquid or gas phase to produce oxygen, which can be recycled through the spacecraft cabin, and
the byproduct hydrogen (ref. 13). A process also fairly well developed utilizes this hydrogen to
produce methane and water (ref. 14). The water is of high purity and can be either electrolyzed
to oxygen and hydrogen or consumed by the crew. The methane may possibly be cracked to pro-
duce carbon and hydrogen, although this reaction appears to be difficult to accomplish in practice.

Accordingly, the methane produced as the byproduct of the atmosphere control system
was considered to be available for food synthesis. The pathway envisioned for the synthesis of
glycerol and the formose sugars was:

(HCHO)3 — Glycerol
CO2 — CH4 — HCHO

Formose Sugars
Thus, the methane would be converted to formaldehyde (HCHO) which could be condensed directly
to formose sugars or condensed to trioses which would be catalytically reduced to glycerol. Pos-
sible pathways leading from methane to propylene glycol, acetic acid, and other simple molecules
which might be used as food will not be discussed. However, it should not be difficult to conceive
of methods for accomplishing the desired conversions.

It is of interest to write a completely balanced set of equations describing some of these

conversions:
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Reaction AH

24 HZO —» 24 ﬁz + 12 O2 +1638.2 Kcal
6 CO2 + 24 Hz——’ 6 CH4 +12 HZO -362.4
6CH4+602—’6HCHO+6H20 . -468.6
6 HCHO'—’CBHIZO6 -135.2
6 CO2 + 6 HZO CGH1206 +6 O2 +672.0

The net equation for the synthesis of a hexose (via the formose reaction) is identical to the net
equation of photosynthesis, although it should be emphasized that photosynthesis proceeds by a

quite different and considerably more complex pathway. It should also be noted that the sole energy-
requiring reaction in the sequence is the electrolysis of water required for the recovery of oxygen.
The remainder of the reactions are exothermic. Further, the reverse of the net equation is the
action that occurs in the body during catabolism of carbohydrate. There are always sufficient
starting materials produced to close the cycle, even neglecting the carbon dioxide and water pro-

duced from the stored components of the diet.
SYNTHESIS OF FORMALDEHYDE FROM CARBON DIOXIDE AND HYDROGEN

A NASA contractor, the General American Research Division of the General American
Transportation Corp., is currently in the process of assembling a breadboard prototype apparatus
which will accept carbon dioxide, hydrogen, and oxygen as starting materials and produce only
formaldhyde and water (ref. 15). All intermediates and byproducts are recycled. A representation
of this apparatus is shown in figure 1. In the main recycle loop on the right side of the figure,
methane is oxidized at 675° C in a reactor containing sodium tetraborate coated pellets. Conversion
during each pass was relatively low, but with a recycle ratio of 35 the yield was approximately 35
percent. The recycle gas composition was 30 percent methane, 10 percent oxygen, 45 percent
nitrogen, 0.2 percent nifrous oxide catalyst, 15 percent carbon oxides, and 1 percent hydrogen.

In the recycle loop shown on the left of figure 1, a small fraction of the main loop gases
is processed in a Sabatier catalytic reaction wherein byproduct carbon oxides are reconverted to
methane. The initial feed of carbon dioxide also enters the system in this loop.

The crude laboratory system required about 50 W to compensate for insulation losses and
other inefficiencies. However, no external heating would be required if the combined heat exchang-
er and insulation system were more than 85 percent effective. The first laboratory system could
produce approximately 40 g/day of formaldehyde, but subsequent prototype systems will produce

appreciably more.
SYNTHESIS OF GLYCEROL FROM FORMALDEHYDE

Various methods have been evaluated for the synthesis of glycerol from formaldehyde
(ref. 15) and considerable progress has been made toward implementing the scheme requiring con-

version of formaldehyde to trioses and their subsequent catalytic reduction to glycerol (ref. 16).
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Figure 1. -Apparatus for producing formaldehyde and water.

Extensive studies have been made related to the selection of optimum conditions for the
condensation and selection of the best heterogeneous catalyst. Several catalysts based upon caleium
oxide or ferric oxide on alumina have been found. Glyceraldehyde was found to be desirable as a
cocatalyst because it greatly reduced the induction period for the autocatalytic reaction and had a
desirable directive effect on the products formed. The most suitable hydrogenation catalyst was
found to be ruthenium on carbon. There is a continuing effort to develop a laboratory prototype
apparatus that will continuously convert formaldehyde to glycerol.

SYNTHESIS OF FORMOSE SUGARS FROM FORMALDEHYDE

The formose reaction whereby formaldehyde condenses to produce a complex mixture of
sugars has been investigated intermittently for over 100 years (refs. 6 and 17). Recently, a new
type of reactor was developed for the synthesis of formose which permitted much greater control
of the reaction than had previously been possible and also permitted the collection of data relevant
to the kinetics of the reaction (refs. 18 and 19).

By using a 500-ml stirred tank reactor maintained at 60° C, it is possible to convert up
to 900 g/hr of formaldehyde into formose sugars. The concentration of formaldehyde has been
varied between 4 and 30 percent in aqueous solution and usually with a 0.1 molar ratio of the
catalyst caleium hydroxide. Depending upon space velocities, conversions of 30 to 100 percent
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can be obtained reproducibly. A method has been developed that permits facile examination of the
formose produce for its composition (ref. 20).

The observed kinetics can be explained by using rate expressions similar to those em-
ployed for énalysis of heterogeneously catalyzed reactions. Complexing-decomplexing steps in the
homogeneous system are equivalent to adsorption-desorption steps in the heterogeneous system
(refs. 19 and 21). It appears that decomplexing of the product may be the rate-limiting step, whereas
the distribution of products is governed by the nature and concentration of the catalyst.

FABRICATION OF FOODS

It should not be expected that crews of long-duration space missions will readily consume
the pure nutrients synthesized onboard without modification or the addition of flavorings. However,
it is not difficult to envision using glycerol, which is quite sweet, and sugars in a variety of ac-
ceptable foods. For instance, they might be used as sweeteners for coffee and tea; alternatively,
they might serve as the basis for flavored soft drinks. If, or rather when, it becomes possible to
convert these materials to higher polymers such as starch, the only major limitation will be in the
ingenuity of the cook. One can readily foresee starch-based foods such as potato soup, pancakes,
and pasta based on regenerated materials becoming quite acceptable food items.
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BiorLoGgicaL Foobps DORIS HOWES CALLOWAY

University of California

Several biological systems of varying complexity have been proposed to fulfill the triple
role of food production, atmosphere regeneration, and waste removal in spacecraft. It should be
noted that production of food in spacecraft (in contrast with that in planetary stations and fixed
bases) is thought of only in terms of a multiple role, otherwise food would be carried aboard as
it is for submarines. (I suppose a case could be made for the recreational value of gardening,
but it probably assumes an exceptional breed of spacemen.) All of the bioregenerative systems
have drawbacks, but some might have advantages over a purely chemical system.

The system most studied is based on growth of green algae, usually Chlorella. In this
scheme, carbon is recycled by photosynthetic reduction of carbon dioxide; the nitrogen and min-
erals of human excreta are utilized to support growth of the microscopic green plants and thereby
cycle these nutrients as well. Higher plants can function similarly but less efficiently, in that
their rate of growth is slower and a larger portion of plant tissue is not capable of photosynthesis.
The most likely candidates among higher plants are duckweed and other fairly primitive plants and
a few of the more traditional food plants that have a large leaf surface and reasonable growth rate,
such as endive, Chinese cabbage, radish, and sweet potato.

The only bacterial system given serious consideration so far involves coupling an auto-
trophic hydrogen-fixing bacterium, Hydrogenomonas eutropha, with electrolysis of water to return
breathable oxygen and food in the form of bacterial cells. Other suggestions have utilized as yet
uncharacterized bacteria in conjunction with chemical atmosphere-regeneration schemes. In one,
a methane~fixing organism would be used with the Sabatier carbon dioxide removal system. Other
researchers have proposed bacterial conversion of formose sugars or fatty acids from chemical
food-synthesis systems. In all cases urine contributes the nitrogen needed for bacterial growth.

Two different fungal systems are potentially useful. The simpler forms, molds and
yeasts, can grow in media containing urine and feces with sugars added. Mushrooms may be grown
on cellulose and nutrients from human wastes. These systems use oxygen and produce carbon
dioxide but could be linked with a chemical atmosphere-regenerative system or be used to process
further the inedible portions of higher plants.

The most elaborate schemes anticipate using algae or higher plants as food for one or
more animal intermediates. Water fleas, fish, rabbits, and fo;vl all have had proponents among
scientists who seek stability in ecologic diversity and who hope to provide more acceptable and
nutritious food in this way. The very complex systems are probably best reserved for planetary
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habitation or major space laboratory stations where they can serve a dual role as biological test
subjects before they are eaten.

Typical compositions of leaves, algae, fungi, and bacteria are given in table I.. All of
these items are quite high in protein content on a dry-matter basis. Their ratios of carbon to
nitrogen are much different from that in normal human diets. In general, the higher the growth
or cell-division rate of the organism, the higher the protein (and nucleic acid) content. These
rapid growth rates are necessary if the systems are to recycle oxygen effectively within reason-
able weight and volume limits.

TABLE I. -PUBLISHED TYPICAL COMPOSITIONS OF BIOMASSES

Amount, %, in-
Dry solids Leaves Algae Fungi Bacteria
Protein (N x 6.25) 20 to 40 40 to 60 30 to 50 65 to 85
Lipids 5to 9 4 to 10 2to 7 6to8
Ash 9to 15 6to9 6to9 2to4
Carbohydrate (by diff. ) 40 to 60 25 to 45 40 to 55 5 to 20
Fiber ag to 15 2to 9 1to 10 Nil

2mcludes leaf ribs but not stems and roots.

Leaves, algae, and fungi are rich in carbohydrate, but in the cases of the microorganisms
variants or methods are known for increasing the content of lipids. The usual means of changing
composition within a given strain is by altering the nutrient medium. Estimates of ash content vary,
often because mineral-rich media are not thoroughly removed when the cells are harvested.

All biomasses contain some indigestible solids, usually in the form of polysaccharides or
complex carbohydrates. Leaves and algae are particularly offensive in this respect. Sometimes
this indigestible material interferes with absorption of nutrients within the cells. This occurs when
the indigestible material is included in the cell wall and the cells are not ruptured before consump-
tion. If the unabsorbed residues reach the lower ileum and colon where they can be acted upon by
bacteria, they produce both excessive intestinal gas and a number of short-chain organic compounds
that have a laxative effect. This may cause poor absorption of the diet in general.

Hydrogenomonas accumulates lipid if deprived of nitrogen or oxygen, as do a number of
other bacteria. This lipid is chiefly a polymer of beta-hydroxybutyric acid, which we have shown
cannot be absorbed from the animal intestine. In this instance there is no interference with pro-
tein digestibility, most probably because the lipid is intracellular.

This brief discussion of composition serves to illustrate two basic judgments to be made

before qualifying biomasses as human food. The first is to assess the closeness of fit between the
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composition of the product and nutritional needs of man (i.e., the C/N ratio). The second is to
detect the presence of substances that have no nutritional value but that do have physiologic effects
(e.g., cellulose). Neither of these factors can be established conclusively on the basis of present
knowledge of either nutritional needs of man in space or attributes of the biomasses. But some
informed guesses are permissible, and these must be made to set the direction of research pro-
grams that will supply the facts by the time such systems are absolutely required, perhaps by about
1984 for the Mars mission.

Distorted ratios of carbohydrate, protein, and fat would be present in the diet if major
dependence for food were placed on a chemical system (high carbohydrate or low-fat protein), a _
biological system (high protein, low fat or carbohydrate), or a minimum-weight, stored-food sys-
tem (high fat, low protein and carbohydrate). We have explored the tolerance of healthy men to
these patterns, in those cases for which published information was inadequate. On the basis of
our own and other studies we have concluded that dietary protein may vary between 45 and 300 g/day,
provided that quality is assured in the former case and adequate water intake in the latter. Fat
tolerance is in the range of 200 to 250 g/day, provided that all the fatty acids are not saturated
and long chain. A minimum of 7 g of some oils could meet the accepted minimum need for essential
fatty acids. Maximum capacity to absorb and metabolize carbohydrate has not been determined,
but the amount which can be absorbed is much greater than 600 g/day. From several lines of evi-
dence, the least amount of carbohydrate that will prevent ketosis is about 70 g/day.

The protein quality of biomasses (the digestibility and amino acid balance) is obviously
important in view of these tolerance limits. In comparison with animal proteins, the amino acid
pattern of leaves is best among those of the biomasses. The other products are somewhat poorer,
particularly with respect to methionine, but compare favorably with the milk protein casein and
good quality plant proteins, such as soybean. Studies recently completed in our laboratory have
indicated that slightly less than 50 g of protein from ethanol-extracted Chlorella (courtesy of
Dr. R. L. Miller, Brooks AFB), commercial Torula yeast, and casein will support nitrogen bal-
ance in man, in contrast to 35 to 40 g of egg protein. In rat studies bacterial protein also com-
pared favorably with casein. Thus, any of the biomasses could theoretically meet all of the protein
needs of the crew.

One of the most important of the nonnutritional factors that may limit consumption of un-
processed cells is the amount of purines present as nucleic acids. Purine is degraded by man to
uric acid which is sparingly soluble in tissue fluids and may precipitate as stones in the urinary
tract or crystals in the joints. Unfortunately, high levels of dietary protein also increase urinary
uric acid, presumably by stimulating endogenous synthesis. The biomasses contain roughly 1 g
of ribonucleic acid (RNA) per gram of protein. To be perfectly safe, it might be necessary to limit
intake of cells to 20 to 40 g of protein per day, the amount depending on individual tolerance limits.
If consumption is increased to the maximum allowable protein intake, the least amount of process-
ing that could be considered is removal of purines from the cells; this would require a new direc-
tion in food technology.
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Nucleic acids are by no means the only undesirable coincidental compounds present in
biomasses. The list includes among others the carbohydrates alluded to earlier, pigments, min-
erals, nitrates, glycosides, amines, and steroids. Many areinnocuousat low dosages but harm-
ful to lethal at high-intake levels. Recently, we found that men cannot tolerate even very small
amounts of either of two bacteria tested: H. eutropha and A. aerogenes. Subjects became acutely
ill from a few grams of dry cells, with symptoms reminiscent of food poisoning.

On the basis of the present most optimistic view, consumption of crude biomasses is
limited to the function of providing protein (plus a few vitamins and minerals) to accompany a
chemically regenerated or stored-aboard diet high in fat or carbohydrate (table IT). Regeneration
of this order of magnitude (7 g of nitrogen and 260 Kcal) is of doubtful value in a spaceship. After
they have been fully processed to remove nucleic acids, fiber, toxins, and other unwanted sub-
stances, leaves, algae, or yeast could form the major portion of a diet. Bacteria could provide
about one-half of the needed food, on the basis of the composition of present candidates. The
processing steps would be quite extensive and it would be a challenge to produce edible products
recognizable as food and acceptable to the crew.

TABLE II. ~-AMOUNT OF BIOMASS USEFUL IN SPACE DIETS

Biomass - - - - -~ Leaf Algae & Bacteria
yeast
Yield from crude product
Protein/man/day, g- - - | ~ 25-30 ~ 40
Energy/man/day, Kecal - | ~. 260 ~ 280 ?
Yield after complete processing
Protein/man/day, g - - - 185 300 300
Energy/man/day, Kcal - 2800 2200 1360
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LonG-TERM CLAYTON S. HUBER

Space MissioN
Technology Incorporated

REQUIREMENTS

Spaceflights for the Mercury, Gemini, and Apollo programs (table I}, are extremely brief
compared with flights for future programs now in the planning stages. Apollo Applications Program
(AAP) missions have been designed to last 28 or 56 days, the minimum time being twice the length
of present accomplishments. The missions for AAP, however, are only intermediate in length.

TABLE 1. -LENGTH OF ORBITAL FLIGHTS

Astronaut or mission Date ) Duration
Mercury
John H. Glenn, Jr. Feb. 20, 1962 4 hr 56 min
M., Scott Carpenter May 24, 1962 4 hr 56 min
Walter M. Schirra, Jr. Oct. 3, 1963 9 hr 14 min
L. Gordon Cooper, Jr. May 15, 1963 34 hr 20 min
Gemini
Gemini 3 Mar. 23, 1965 Approx 15 hr
Gemini 4 June 3, 1965 4 days
Gemini 5 Aug. 21, 1965 8 days
Gemini 6 Oct. 25, 1965 2 days
Gemini 7 Dec. 4, 1965 14 days
Gemini 6-A Dec. 15, 1965 1 day
Gemini 8 Mar. 16, 1966 3 days
Gemini 9 May 17, 1966 . 3 days
Gemini 9-A June 3, 1966 3 days
Gemini 10 July 18, 1966 3 days
Gemini 11 Sept. 12, 1966 3 days
Gemini 12 Nov. 11, 1966 4 days
Apollo

Apollo 7 Oct. 11, 1968 11 days
Apollo 8 . Dec. 21, 1968 6 days
Apollo 9 Feb. 3, 1969 10 days
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The purpose of this paper is to discuss space missions beyond the AAP, which are classified as
long term. It should be emphasized that these concepts are only possibilities at the present time.
No definite programs have been implemented, although considerable effort has been expended dur-
ing initial planning stages. Attention will be focused on three concepts of space exploration. They
are designated as the Earth-Orbit Program, the Lunar Program, and the Planetary Program.
These three programs will be discussed individually,

EARTH~-ORBIT PROGRAM

Future Earth-orbit programs will begin with the AAP. Subsequent Earth-orbit missions
will increase both in crew size and mission time. In the next decade the launching of an Earth-
orbiting space station manned by a crew of 8 to 12 individuals is a distinct possibility. The dura-
tion of such a flight would be about 180 days. (This is about 13 times longer than any previous
flight). Flights within this time frame and longer ones must be classified as long-term space
missions.

Near the latter part of the decade a space-station facility which will support men and
equipment on a permanent basis will be assembled in space. Such a station could have the capabil-
ity of housing 50 to 100 individuals in an Earth-like artificial-gravity environment. The space
station would be equipped with a hangar and docking area. Space shuttle vehicles traveling between
the station and the Earth would provide logistical support, thereby resupplying expendable mater-
ials. Resupply would probably be reserved for expendables and subsystems which require open-
loop operation. This space station could also serve as a centralized storage facility for expend-
ables and equipment which could be utilized for subsequent planetary missions.

LUNAR PROGRAM
Lunar landings during Apollo and post Apollo lunar exploration will utilize small vehicles,
and crews will be confined to the immediate area of the spacecraft. Future exploration will re-
quire multiman vehicles and additional supporting systems for increased stay times. Concepts
for the establishment of a lunar base are being developed. Such a structure would be somewhat
permanent. Conceivably, a lunar base could be resupplied with expendable materials and crew
members could be rotated periodically.

PLANETARY PROGRAM

Another category of long-term space missions is that of planetary exploration. For such
missions a spacecraft could be launched from Earth or from a permanent base such as a space
station. Present plans call for a Mars-Venus manned fly-by during the latter part of the next de-
cade and a Mars orbital mission or landing by the year 1984. These flights would be extended
nonresupply missions which would require 420 to 540 days for completion.

The requirements for a feeding system may not be identical for all of the long-term mis-
sions categorized earlier. Unique features associated with each program will need to be satisfied.
Missions will vary with respect to crew size, extent of activity, and environmental conditions.

The extreme conditions on the lunar surface are quite different from the artificial-gravity environ-
ment in a large space station. There is one common denominator, however; as the length of
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manned spaceflights and exploration increases, the problems associated with life support multiply
and become more complex and much more speculative.

As previously noted, the space station could be resupplied periodically with expendables,
including food. The requirements for a feeding system will be quite flexible and not so restrictive
as those for past and present systems. It is anticipated that conventional methods of food prepara-
tion and eating will be compatible with the environment within the space station. Hardware and
equipment will be provided which will heat and cool foods prior to consumption. It is also conceiv-
able that the technique of resupply for the lunar exploration programs could also be applicable for
a portion of the nutritional requirements. Because of the factors of space and weight, which will
not be restricted, recycling methods may be quite feasible on the lunar surface.

Extended planetary missions with no resupply will require a highly reliable feeding sys-
tem. Such reliability may result in some redundancy. A nominal system might be designed to
include several food sources, with pro(risions for complete failure of one or more sources. With
this approach, failure of a single food source would compromise overall food acceptance but not
the available nutrients required to maintain crew health and performance.

At some point a closed life-support system must be integrated into the program. The
objective of closing loops is to reduce the weight of expendable supplies, life-support equipment,
and supporting eculpment for electric power. At some point the penalties for resupply or for an
adequate supply for the duration of the mission will exceed those for regeneration. This point was
illustrated in a study by the Convair Division of the General Dynamics Co. (ref. 1). Closed-loop
systems for the regeneration of water and the recovery of oxygen will probably be used first
(100 to 1000 man days). The feasibility of regenerating food from wastes in a closed system is
more distant, but such a concept could be integrated into the feeding systems during the next de-
cade. In fact, systems could be qualified on missions for which resupply is the core of a feeding
system.

Recently the Soviet Union conducted a 1-year test of life-support systems. Three human
subjects spent 1 year in a sealed chamber. Air and water were regenerated; food consisted of
vacuum-dried products and fresh vegetables from a "cosmic" greenhouse. Dehydrated foods in-
clude such items as salmon, chocolate, cottage cheese, and prune paste. To provide variety, a
repeatable 5-day menu was devised. During the second and third stages this diet was augmented
by fresh vegetables (which included cabbage, cress, cucumber, greens, and dill) from the green-
house (refs. 2 to 6). )

The following statement was made in a report issued by the Space Science Board (ref. 7):
"Very long duration missions may require production of food in the spacecraft. Further study of
the production of the nutritionally important substances and their conversion into edible food is
necessary before the practicality of such procedures can be assured."

Several life-support systems have been proposed whereby food is produced from biological
wastes. Biological systems which have been investigated include algae, bacteria, higher plants
(hydroponics), herbivorous invertebrate animals, fungi, and plant cultures. The Space Science
Board in 1966 (ref. 8) suggested that: ""Consideration should also be given to the production of
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higher plants or animals that may be more palatable to humans. It has been shown, for example,
that sweet potatoes grow well in hydroponic culture utilizing the end products of the stabilization of
human wastes." Chemical synthesis, including the synthesis of carbohydrates, lipids, and amino
acids, has also been suggested as a possible alternative to biological systems.

Inherent advantages and disadvantages are associated with each biological and chemical
system. Fach system must be evaluated in terms of purifying and converting the material into an
edible form, food acceptability and palatability, nutritional adequacy, efficiency, compatibility with
the total life-support system, logistical support, mission duration, and the number of individuals
involved.

In reference 9 several statements were made on this subject: "There are two significant
areas with a high probability of future research and development effort. These pertain to the nutri-
tional aspects of the food-waste loop and the ultimate acceptance or rejection of the produced food
by the crew. The crew acceptance of the synthesized food may well prove to be the major re-
straint in this method of closing the ecology."

Feeding systems for long-term aerospace missions must provide adequate nutrients which
will maintain the original health of the flight crews and maintain a high level of crew performance,
behavior, and morale. It was stated in a report by the Space Science Board (ref. 10): "As flights
become longer, the attitudes of the astronauts will increasingly affect the success of missions.

It will be necessary to have an intensive and extensive knowledge of the dynamics of man's be-
havior in respect to food and to be able to predict man's performance."

Long-term studies similar to the one conducted by the Soviet Union could provide important
data in the development of future concepts for !long-term migsions. Studies conducted in the United
States have been of less than 60 days' duration. More long-term research needs to be conducted.
Possible areas of research as outlined by the Space Science Board (ref. 11) might include:

(1) The analysis from a storage stability standpoint of the presently available take-along

foods

(2) The study of changes in dietary appeal due to long confinement

(3) The toxicological properties in foods which may be used

(4) The effect of dietary regimens on waste production
(5) The investigation of continued long-term consumption of unconventional food materials

o ,on intestinal flora aéd 1 motility
(6) The effect of diet on flatus
(7) The investigation of changes in metabolic balance under the stresses of flight
In summary, each program - Earth orbital, lunar exploration, and planetary - has unique
concepts associated with it. An all-inclusive approach will not completely sétisfy the requirements
for these long-t-e'rrxi space missions. Life-support systems will probably be integrated into long-term
feeding systems. It is doubtful, however, that a feeding system designed for any long-term mission

will be completely dependent upon food production within the spacecraft as the sole source of nutrients.
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U.S. ArMy FooD HERBERT A. HOLLENDER

R&D PROGRAM U.S. Army Natick Laboratories

The food technology aspects of military rations and space foods and the problems associated
with their development have been covered in numerous publications (refs. 1 to 6).

Proper design criteria are required for any feeding system or subsystem. For military
field rations these are:

(1) Acceptability: liked by majority of troops

(2) Stability: 6 months at 1000 F

(3) Nutritional adequacy: calories and essential nutrients

(4) Utility: meets specific serving requirements
With the use of these criteria, a food product or feeding system can be developed or modified to
meet any major operational situation. The same criteria can also be applied to a system for feed-
ing in space.

A product which has outstanding military utility in the field still must address the supply
and delivery systems involved. These criteria, when properly defined and applied, force the de-
velopment of a product or a ration that is integrated with the system. For example, they preclude
perishable foods in a ration which has to be carried by the soldier and wherein resupply is not
feasible for several days. Obviously, utility and stability have not been correctly addressed if
ice cream were probosed for such a situation. A product or combination of products is required
which is light in weight, easily prepared or requires no preparation, nutritionally adequate, and
stable enough to meet the requirements of the long military supply line. All new products and
ration prototypes must undergo intensive evaluation against these criteria. This includes testing
against the specific technical requirements which have been established through translation of the

military requirements.
FREEZE-DRYING

Some 12 to 15 years ago, after the needs for new field rations that would meet changing
battlefield tactics were analyzed, freeze-drying was chosen as the method of food preservation
which had the potential of providing products and rations that would best fulfill the maximum num-
ber of criteria.

Up to that time the freeze-drying of food had been largely a laboratory curiosity. However,
work in our laboratories and in closely related research groups demonstrated that it could be a
practical method of preservation. Today, freeze-drying is being used both for military and civilian
products. Admittedly, the high cost of processing is still a disadvantage, and a product selected
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for this method of preservation must show an advantage in some characteristics such as flavor,
stability without refrigeration, convenience, or light weight before the product can be successfully
marketed to either a military or civilian customer.

The Army Food R&D Program has developed or modified and introduced into the military
supply system more than 45 new items. Many of these are freeze-dried and range from peas to
shrimp. They are used in garrison meals as well as in the combat area.

In addition to these 45 components complete rations are under development. One which
has been completed but is not yet in the supply system is the quick-serve meal. All of 21 meals
developed are precooked and are ready to eat after the addition of hot or cold water. From the
technology which evolved through the development of these meals came the first-generation Food
Packet, Long Range Patrol. This was the first freeze-dried ration actually to be used. Each
packet contained an entree item such as chili, beef stew, or chicken and rice. Eight different en-
trees were available. The first-generation packets were well received, but required approxi-
mately 20 minutes to rehydrate in hot water and much longer when the water was unheated.

When the first requirements for foods for space were received by the Army, this back-
ground of freeze-drying technology was available for immediate application. However, if freeze-
dried products were to be used, reconstitution by means of cabin-temperature water was limited
to no more than 10 minutes. New technology had to be developed to meet these requirements. With-
out the background of experience from the Army program, a much longer leadtime would have been
required to provide the 26 items which have been developed. (This illustrates what we have ex-
perienced many times in R&D work; that is, when you build an inventory of research and develop-
ment information and experience, you never know in what direction or when it may be applied.)

However, the story does not end here. From combat patrol experience in the jungles
and rice paddies of Vietnam, it was found that 20 minutes was frequently longer than could be
allowed for preparation of the long-range-patrol food packet while on patrol missions. The need
was recognized to shorten the rehydration time in hot and cold water, and, if possible, to make
the products acceptable when consumed without rehydration, that is, suitable for eating out of hand
like popcorn.

Using the technology developed for space foods, the products were reengineered, they were
tested in pilot-plant production, and a suitable procurement document was written in less than 3
months. Unlike most combat rations, these new "LURPs, ' as they are known in Vietnam,
receive fan mail. Many letters have been received saying that they are excellent and request-
ing information as to how they can be obtained for future use or for sending home so that Mom and
Dad can see how good they are. Procurement of these packets currently runs around 10 to 12 mil-
lion per year. Considering the small number of troops (less than 10 percent in Vietnam) that are
actually being subsisted on combat rations, this indicates a very high usage rate. Needless to say,
the eight entrees (pork with escalloped potatoes, beef stew, beef hash, beef with rice, chicken
stew, chicken with rice, spaghetti with meat sauce, and chili) of the long-range-patrol food packet
could not have been completely reengineered in the time frame indicated without the use of the
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technology developed for space foods. These products rehydrate in 5 minutes or less with hot or

cold water and may be eaten out of hand (fig. 1).

¥ Coa -

Figure 1. -Long-range-patrol food packet.

FLEX CANNING

The technology of flex canning is being developed to reduce package weight by eliminating
the use of metal cans for heat-processed items such:as meats, vegetables, fruits, and baked goods
in individual serving sizes. The packaging materials and the process have been described by
Rubinate and Szczeblowski (refs. 7 and 8). The pouch material now used is a 3-ply laminate con-
sisting of 0.0005-inch polyester, 0. 00035-inch aluminum foil, and 0.003-inch modified polyolefin
as the food contactant. The special polyolefin will withstand a retort temperature of 250° F. The
process is normally carried out in a retort using steam-air or water-air mixtures with sufficient
time at the above temperature to provide for thermostabilizing of the product. Carefully con-
trolled balancing air pressure is used to prevent bursting of the pouch during processing. A wide

variety of products (fig. 2) and processes for them have been developed.
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BEANS IN TOMATO SAUCE

Figure 2. -Flex-canned foods.

The texture and flavor of the cake and bread products have been difficult to control because
of a tendency of these products to compress when thermally processed in the sealed pouch. To date
we do not have a fully acceptable breadlike product although some cake items ranging from satis-~
factory to excellent have been developed (fig. 3).

The availability of technology for moist products in flexible packages from the Army ration
development program made it possible to provide turkey and gravy as a Christmas dinner entree
for the flight of Apollo 8. The product was consumed from the pouch with a spoon. A few months
before the flight, the U.S. Air Force, in a series of parabolic flights, determined that Spoon eating
in weightlessness was feasible. This turkey and gravy product (fig. 4) was developed, processed,
and safety-tested at the U. S. Army Natick Laboratories in approximately 5 weeks following the
decision to use it. Thig quick response would not have been possible without the technology which
was at hand from the military ration program. Additional products have been developed especially
for space feeding purposes and were used on Apollo 9. Others are planned for subsequent flights
(figs. 5 and 6).
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—  DATE-NUT-CAKE 8

Figure 3. -Cake items suitable for processing in sealed pouches.

Figure 4. -Turkey and gravy, a thermostabilized wet meat product.
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BEEF & POTATOES
HAM & POTATOES
TURKEY & GRAVY

BEEF & POTATOES

Figure 6. -Thermostabilized wet meat products in open containers.
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FUTURE OUTLOOK

As was mentioned earlier, the development of rations for field use requires constant con-
cern for the logistics involved. If the food is to be carried on the soldier's person, both weight and
volume become extremely important. In 1963 a series of contracts supporting an extensive effort
on the subject of compression or compaction were initiated. A number of contracts were awarded
to provide the background of research upon which to build a technology for advancing the state -of
the art. On the whole these contracts were successful, although because of a reduction in funds
the data developed were insufficient to permit writing of production guides for foods that could be
used as such or combined suitably into meals. With funds provided by NASA, a contract was
awarded for the development of prototypes along the line of meal components. These efforts have
been described by Durst (ref. 9) and Brockmann (ref. 10). It was shown that by using the tech-
nology available, products such as beef, chicken, rice, potatoes, and vegetables could be combined
with a calorie-containing matrix (developed from previous contract work on edible coatings) and
compressed to provide 20, 000 to 22,000 Kcal in approximately 10 Ib and a volume of 408 cu in.,

a volume slightly larger than a shoe box. By various combinations of compressed sauce or gravy-
mix cubes with compressed food bars, it was possible to provide 32 familiar foods (fig. 7). Ad-
mittedly, some of the foods were not highly acceptable but they provided a beginning.

MASHED
POQTATO

MASHED

vasHED POTATOE

T POTATOE _ . g Y L=
+° MASHED
POTATOE
BAR

_ CHEESE
CHOCOLATE . CuBE 4
= CUBE . &

CHICKEN
=, GRAVY
CUBE

Figure 7. -Compressed sauces, gravy mixes, and food bars which, when combined, will
provide 32 familiar foods with a total of 20,000 Kceal,
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One can quickly see that this approach may have application for extended space flights or
where prepositioned food supplies would be required. Menus could be planned using products based
on these prototypes which would provide the weight and space savings that might be essential. Oceca-
sional supplementation with frozen foods such as steaks or other specialty items might assure the
overall acceptance of such menus. Extension of this work is underway to improve the acceptance
of the food items prepared from these basic 'building blocks. "

Work is continuing on the compression of individual products such as peas (fig. 8), carrots,
cherries, shrimp, meat balls, and sausage. Just recently we have been able to provide a memory
in freeze-dried beef chunks. This beef, with added flavoring, can be compressed. Upon the addi-
tion of water, it will come back to its original shape. Meat balls behave the same way.

Figure 8. -Dehydrated, compressed, and rehydrated peas.

The procedure used with most products is as follows: the items are freeze-dried, then
equilibrated to approximately 6 to 8 percent moisture and compressed at pressures from 500 to
1500 psi. After compression, redrying is accomplished either in a vacuum or convection oven. As
might be expected, the appropriate procedure for each product has to be determined. For example,
the cherries are successfully compressed without the addition of added moisture. Little or no notice-
able damage is apparent in the reconstituted product if the compression phase is properly conducted
(fig. 9).

Several specialized pieces of equipment are being utilized in studying the parameters of
compression and texture in order to better understand what happens. By use of a universal test
instrument with custom features we are attempting to determine the effect of storage at ambient and
elevated (100° F) temperatures on compressed dehydrated food. Early subjective data obtained in
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Figure 9. -Compressed freeze-dried cherries.

conjunction with storage studies focused attention on objectionable texture changes which occurred

in storage. Although hardening is the most common complaint, we have found that not all cubes of

the type presently used as space food harden during storage. Tables I and IT and figures 10 and 11

show that the hardening or softening which take place during storage depends upon the nature of the

material.

TABLE I. -TEXTURAL CHARACTERISTICS OF COMPRESSED SPACE FOOD CUBES

Storage Hardness, kg, at storage temperature-
Sample time, 5
mo 40" F 100° F
Cheese crackers 12.8 15.2
Custard 17.2 28.1
Sugar 15.8 16.5




TABLE II. -TEXTURAL CHARACTERISTICS OF COMPRESSED FOOD BARS (marine packet)

Sample Hardness, kg, at storage condition-
Initial 100° F for 6 mo
Beef jerky 10.2 15.5
Cereal with lemon 2.6 3.3
Date fig 2.3 2.2
Lemon starch-jelly candy 5.6 1.0
76
Vanilla
601
.QP Coffee
m.
%}
g
&
&)
us]
36
12+ chocolate
| I 1
0 0.5

Work, Kg-cm 2-9 4.0

Figure 10. -Crushing work and penetration
hardness of dehydrated compressed ice
cream cubes after storage at 100° F for

a period of 6 months.

From research to date we can project that the weight and volume advantages of compressed

freeze-dried products will enable the provigion of a wide variety of products at approximately 3.76

cal/cc, as compared with the present average of approximately 1.41 cal/cc for uncompressed prod-

ucts. Defining the parameters for successfully compressing a variety of dehydrated food is con-

tinuing.

Additional varieties of freeze-dried foods will be needed to support flights of long duration

or in any situations where prolonged consumption of dehydrated diets is necessary. For example,

how about a rare steak ? Although it is generally not considered possible, as it loses red color

when stored, we have indications that if a steak does not come in contact with oxygen after it is
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Figure 11. -Effect of storage temperature
on compressed chocolate cubes.

placed in the freeze dryer we can have a rare steak of normal appearance. Also, we have data to
indicate that oxygen-sensitive products, like carrots, have a markedly improved keeping quality if
exposure to oxygen is minimized throughout processing and storage (figs. 12 and 13). There is a
marked reduction in flavor deterioration when oxygen is totally eliminated. A glove-box technique
was used for removing the product from the freeze dryer. In order to reduce the oxygen to this
low level a palladium catalyst was employed in an atmosphere containing 5 percent hydrogen and
95 percent nitrogen. This technique is practical, especially for small lots of product. The pallad-
fum hydrogen system is being used commercially in England.

Continued research in the areas of texture and flavor, coupled with that of compression
or densification, should provide products with greatly improved flavor and texture plus the marked
advantage of drastic reduction in volume.

Intermediate-moisture foods are receiving attention by the food scientists and technologists.
Natick Laboratories has awarded contracts to apply this technology to products of military import-
ance. Under one contract a wide variety of prototype products has been developed. Carrots,
apples, and pork and beef, for example, have a moist mouth feel resembling the natural products
in appearance, flavor, and texture and they also provide added calories per cc. Under normal
storage conditions, no special packaging or refrigeration is required.

With NASA support, experiments have been carried out with a modified microwave oven.
The smallest available commercial IkW unit (110V-AC 2450 MH) was reworked to reduce its weight
by 39 percent and its volumé, by 45 percent. The cavity is now 10 by 10 by 5 in. and will accom-
modate a small tray which can be used to quickly rehydrate and heat the rehydrated food or to heat
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regular prepared food. The baking of bread and cakes at 6 psia ina special glass tube placed in
the cavity is being investigated. Preliminary results indicate apparent feasibility of preparing
bread from a special mix. However, to date, cakes have not been successful. Further reduction
in weight and volume of the heating device can be achieved by use of smaller magnetrons, other
types of oscillators, and solid-state components.

Using funds provided by NASA and the Air Force, Natick Laboratories now has under con-
gtruction a room in which food can be processed in a controlled environment. It will enable the
determination of contamination levels of products as they come into the room and pass through the
various unit processes, and thus give a much better understanding of methods for controlling
microbiological levels in food.

The work described clearly shows the mutual benefits that have been gained from the
rather large R&D program carried out at the U.S. Army Natick Laboratories. The technology
developed for Army field rations has been quickly brought to bear on the unique requirements of
NASA and the Air Force. However, meeting these requirements has, in turn, been of considerable
benefit to the Army program. A continuation of these combined efforts has the potential for pro-
viding a feeding system which would have maximum utility and acceptability for future missions.
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We have heard that preparing food which will be safe, nutritious, and tasteful
for crews of aerospace vehicles is a complex problem. Solving it requires contri-
butions by food technologists, nutritionists, psychologists, and engineers. The pre-
vious speakers have discussed the status of current and planned food systems for
space travel, the military (U.S. Navy, Army, and Air Force), and the airlines. Each
has distinct problems, but common goals - to make food more attractive in appear-
ance, more tasteful, more nutritious, and more manageable. In this final session,
we will coordinate the views of engineers about equipment, of the systems integrators
who have the task of providing the hardware for preparing the food, and of those whose
functions include integrating the processed food and preparation hardware within the
vehicles.

As much as possible, food should resemble that to which the crew is accus-
tomed. It is obvious that the best food management system would be a kitchen in which
food preparation could start from a basic stock of conventional foods and there could be
relatively free choice of the composition of an individual's diet. Since this is not pos-
sible nor practicable in limited space, it is important that experts in all of the dis-
ciplines represented here cooperate so that deviation from the "normal’’ diet can be
minimal and the physical form of the food can be sufficiently acceptable not to com-
promise the mission.

We hope that in this session one can identify research needed on conventional
food, primarily in processing, preparation, and packaging of foods, and on system
design to satisfy the requirements of vehicle constraints and environment. (I would
like to invite the speakers to modify their papers, if they wish, as a result of dis-
cussions during this session.) In the case of some vehicles these requirements must
not be in conflict with maximum acceptability of the food and its stability at possible
temperature extremes. We as engineers can contribute to the solutions of problems
of safe storage, minimum packaging volume, preparation, and ease of handling when
in use.

I would like to cite two examples in which engineers have assisted the food
technologist. Several years ago an edible soluble packaging film made from a new type
of corn grown in Nebraska (ref. 1) was developed commercially. This new film is
chemically produced from highly amylose starch. The film is unusual in that it is
soluble in either hot or cold water and is a digestible food item. It also meets the



most rigid food packaging standards. Another food packaging technique with market
potential is aerosol dispensing. Food packaging has been encouraging, but the use
of aerosol cans for processed foods appears extremely limited at this time, because
of volume and safe storage problems.

In May 1963, AMRL through the General American Transportation Corp.
completed a feasibility study of methods for heating foods during aerospace flight
(ref. 2). Some of the methods considered included induction and dielectric heating
and an internal resistance heating probe within the food container. As a result of
laboratory evaluation it recommended that the internal-probe technique be developed
along with the necessary food container. It concluded that a three-container food
warmer based upon this technique would weigh approximately 4 1b and have an overall
efficiency greater than 75 percent. The food containers developed for this technique
should contain an internal pocket for accommodiating the internal heating probe. The
solution to this requires cooperation of the vehicle and the food processing engineers.

A microwave oven for the household will shortly be mass produced and may
be in wide use by the mid 1970's. This will necessitate preparing fully cooked prod-
ucts and packaging them in suitable containers for microwave heating. The aerospace
industry has been a leading proponent of this new product development program and
needs the cooperation of the processing industry. Our speakers this afternoon will

address themselves to this technical area.

Joseph N. Pecoraro
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I am grateful for the opportunity to participate in this conference. Iam probably the only
one attending who comes directly from Old Europe. German and other European universities have
not yet given sufficient consideration to food technology and technical equipment. This I can verify
from my own experience, as at the present time I am one of a few teaching this subject at two uni-
versities.

More than 40 years ago I installed a cooking appliance in an airplane - maybe the very
first one. This was a milestone and a few years later I turned completely toward engineering and
commerce in this branch. About 4 years ago, by courtesy of the Whirlpool Corp., I obtained their
layout of a spacecraft kitchen for a 3-man crew for a 3-week flight. This all seemed somewhat
unrealistic at that time.

Professor Paul Buck had objections to the conservative cycle of meals the astronauts are
required to maintain. I definitely agree. There is no relationship between space and the basic
time periods of our daily life. Even when considering future commercial air transport we find
similar conditions. Please imagine you are sitting in an SST plane above the middle of the
Atlantic! What is Mr. Treadwell of Pan Am going to serve you: Breakfast or lunch ? Leaving
Paris or London for New York at noon you expect lunch! But because of the local time difference
you arrive at Kennedy Airport 3 hr earlier, just in time for breakfast. The question arises:
From which coast will you determine the relative meal time ?

Some speakers have mentioned the microwave oven, and one pleaded for ovens equipped
for defrosting, rewarming fresh grilled steaks from the deep-frozen condition, etc. May Iadd to
these considerations a Werner Sell high-temperature oven which has been developed in my com-
pany and uses a method of fast-circulated hot air ? This oven is the result of extensive research
and 15 years in service. Steady improvements have resulted in a tiny box with the following ad-
vantages:

(1) Regulated temperature within all areas of the oven. Food serving temperature con-
trolled within 3 to 5 percent. A continuous regular thermostat makes it possible to adjust the
temperature between 50° and 250° C (120° to 480° F).

(2) Very short defrosting time from -18° to 80° C (0° - 176° F). This time is dependent
on the weight and the layer thickness of the foods, as well as on the available electric energy. The

defrosting time of the ovens is between 20 and 30 min.
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(3) When the thawing time is properly adjusted according to the instructions, the food will
not boil, burn, or brown around the edges.

(4) Normal ovens defrost and cook at 390° F. With Juno ovens it is possible to defrost
at 266° F, because of the heat circulation system and ventilation; thus the use of plastic dishes is
permitted.

(5) The oven is well suited for grilling steaks and poultry.

(6) It is also possible to bake cakes and small baked goods in this oven. The baking time
Is significantly shorter than in the usual baking ovens without air circulation.

(7) Moreover, it is possible to bake or boil eggs in this oven.

(8) It is no problem to keep food warm for a specific period of time.

The electric power requirements are 3600 W for heating and 200 V for the motor.

In case there is any chance for a spaceship cabin to accommodate such equipment, we
would be well prepared to develop a special small and lightweight oven with high efficiency. On
my return to Germany I will carry with me a lot of problems and ideas, and I deeply hope that
Europe will contribute its part in these great tasks.
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DEVELOPMENT

Tor those not familiar with heating by microwave, a brief explanation is in order. Food
is placed in an oven cavity and heated by molecular agitation. When exposed to microwave energy
the water molecules in the food try to aline themselves with the rapidly time-varying electro-
magnetic field. The water molecules oscillate at 2 450 000 000 cps. The oscillating molecules
rub against each other and heat is generated by this intermolecular friction. Heat transfer by con-
vection and/or conduction is a secondary process which occurs after the outer surface of the food
has been exposed to the microwave excitation. For maximum speed in cooking with microwaves
it is desirable to heat the product from all six sides. Materials such as glass, paper, plastics,
and ceramics are used to package the food product since they allow microwave energy to pass -
through them with no retardation. All types of food in any state of preservation (fresh, refriger-
ated, or frozen) can be used provided that they are properly prepared. The microwave oven does
not perform magic; the product turned out of the oven is only as good as the product put in. How-
ever, because of the speed with which the oven heats, few detrimental effects occur and the product
may have better appearance, quality, and nutritional value.

HISTORICAL BACKGROUND

In the summer of 1963 Litton Industries was approached by a major airline to undertake
the development of a microwave oven for the in-flight preparation of meals. As with many new
concepts, an incubation period was necessary between initial conception and a working unit. In
April 1965 the first flight test of a prototype oven was conducted jointly by the airline, Litton, and
the FAA.

This first Litton airborne unit was designated the T-20 model. It was a single magnetron
oven, weighing 86 1b, operating at 2450 Mc, and providing approximately 1200 W of power in the
oven cavity. The T-20 design utilized many of the commercial state-of-the-art concepts prevalent
at the time but used 400-cycle components.

With most revolutionary concepts two design approaches may be taken; one is to make it
as simple as possible and add on only when necessary, whereas the other is to provide as many
systems as possible within the given space envelope and extract them after new and less compli-
cated solutions are available. The nature of the T-20 microwave oven dictated following the later

approach. Therefore, the design incorporated sensing devices to ensure complete protection
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against any possible RF interference. A sophisticated mechanism was devised which raised and
lowered as well as rotated the food product. Although from an operational standpoint this con-
servative approach was less than successful, we cannot discount the impact this design and the
operational flight tests made on the state of the art of airborne microwave ovens. Both the air-
line and Litton take credit for pioneering a concept which will be the forerunner of a valuable tool
for in-flight feeding in the age of the jumbo jets and supersonic transports.

After a complete review of the in-flight tests which included both domestic and trans-
Atlantic flights, the design underwent a series of changes which culminated in the specifications
for the present Model E-30. The feeding objectives included the boarding of only frozen prepared
foods to be heated to order. This plan allowed foods to be returned to inventory if not used and
ideally would make it possible to feed a passenger in less than 2 min.

The E-30 airline microwave oven is a double magnetron unit weighing 110 Ib, operating
at 2450 Mc, and providing approximately 2400 W of power in the enlarged oven cavity. The new
concept deleted a number of the original requirements and concentrated on simplicity, reliability,
serviceability, and reduced weight while it retained an acceptable heating pattern for the food
products to be used in flight. The cavity was enlarged to permit handling of greater quantities.
Advancement in the general state of the art of all types of microwave ovens and the old cliche that
"necessity is the mother of invention" explain the drastic changes that took place in the evolution
of the E-30 sensing devices.

A primary concern during the initial T-20 development had been the effect of RF leakage
from the oven on the many navigational and communication systems of the aircraft. No interference
was detected at any time during the FAA - observed flight tests or the operational flight-test pro-
gram. The T-20 had both a no-load sensor and a door-seal sensor which were programmed to
shut off the heating cycle in the event that there was no load in the oven or that the leakage from
the door exceeded a given level. Both these devices were extremely sensitive and required intri-
cate electronic circuitry which resulted in nuisance shutoffs during operation and increased the
cost of the equipment. A light load such as a Danish roll lacked sufficient density to prevent the
no-load sensor from actuating. Accumulated moisture running down the front of the oven over the
seal was sufficient to actuate the door-seal sensor.

New advances in the state of the art brought inexpensive and reliable solutions to both
problems. A lossy glass or ceramic shelf now serves as a medium which can absorb the micro-
wave energy, thus negating the requirement for a no-load sensor. The glass or ceramic is not
too lossy to permit bottom heating of the food product; thus no extensive detrimental effect on the
cooking pattern occurs. The shelves are capable of absorbing the energy for periods of time ex-
ceeding the maximum setting of the timer.

The success of seal-plate and choke-type doors in over 25 000 commercial applications
has virtually eliminated the necessity for a door-seal sensor. Simplicity in design has provided
adequate protection and reliability at reduced initial and sustaining cost. The E-30 oven which has
a seal-plate-type door was tested before and after 30 days of flight testing and no leakage even
close to allowables established by reference 1 was measured.
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HEATING PATTERN CONTROL

One of the major problems facing microwave oven designers is directing the waves uni-
formly to the food product. Since the heating is by direct interception of the RF waves and not by
conduction or convection, hot and cold spots can occur. Some early designers utilized the rotating-
shelf concept to balance the exposed food product to the energy. Other concepts broke up the direc-
tion of the waveforms by putting stirrers in the feedbox or waveguide. The T-20 utilized both ap-
proaches. The result was a near-perfect heating pattern for nearly all types of food products
regardless of their geometric configuration or their density. However, the complexity and reli-
ability of the mechanical system required to provide this optimum heating pattern were not com-
patible with the aircraft environment. Therefore, only the stirrer concept is used in the present
E-30. The approach has been quite successful and it is possible to obtain a uniform heating

pattern over a 1 3 -sq-ft area.
COMPONENTS

The primary and most dramatic improvement in the E-30 design is in weight reduction.
New components and new electric concepts permitted a 30-percent reduction in weight. The new
components also improved reliability and permitted use of modular construction techniques which
improve serviceability.

The magnetron used in the T-20 was of an electromagnet type and weighed 13 Ib. It was
prone to filament failures, especially in the shock and vibration environment of an aircraft. The
new L-5181 tubes have permanent magnets and weigh 6.5 1b. New construction techniques make
it possible to fabricate a magnetron which can withstand shock and vibration and provide 4000 to
5000 hr of operation.

A plate transformer is required to raise the input voltage from 200 to 3500 V and to pro-
tect the magnetrons from transient voltages present in the aircraft electric system. New design
techniques and new high-temperature epoxies have been instrumental in reducing the weight by
50 percent. The transformer in the Model E-30 weighs 13 Ib. The original T-20 transformer
weighed 26 1b.

PRESENT STATE OF DEVELOPMENT

The E-30 concept was reduced to practice in early 1968 and underwent an in-flight
evaluation during the summer of 1968. Results of these flights were very encouraging. No
serious operation or technical problems were encountered. The feeding objectives were achieved,
and several airlines are currently designing in-flight feeding systems which include a Litton E-30
microwave oven as an integral part. Litton is engaged in a full-scale marketing effort for both

new aircraft installations and older aircraft retrofits.
E-31 AND SPEED OVEN DEVELOPMENT

Two other programs influenced to a large extent the state of the art of airborne microwave

ovens. The first was the development of the E-31 oven. The E-311is a single-magnetron oven
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operating at 2450 Mc providing approximately 1100 W to the oven cavity., It weighs 82 1b and has a
volume of 4.3 cu ft. The E-31 was developed specifically for the presidental fleet and is a 400-
cycle version of a standard commercial model. These ovens have been in operation for 14 months.
The success of this equipment has demonstrated the ability of the electric components to withstand
the aircraft shock and vibration environment.

The Speed oven is a large-cavity, 4-magnetron, 400-cycle oven developed for an advanced
concept of a U.S. Army field kitchen. It is designed to feed 200 men or to supply 5000 men with
bakery products. The ovens used in the Speed kitchens have demonstrated good reliability under
actual field operations. At last report the ovens had over 800 hr of operation without magnetron

failure.
CONCLUDING REMARKS

The state of the art of airborne microwave ovens"\has improved significantly during the
last 6 years. We are now able to provide 22 W/1b of oven, whereas originally we could provide
only 14 W/Ib. The use of solid-state power supplies could conceivably increase this ratio even
more.

The use of microwave ovens for any mode of transportation depends to a large degree on
the total feeding system. The type of food, food packaging, food storage, and oven must be com-
patible. The microwave oven system is superior to more conventional methods for small amounts
of food and individual meals. Full power is attained in seconds; no warmup of the oven is required.
Therefore, the actual high electric power drawn from the vehicle power system is required only
during the actual cooking time.

Although cooking by microwave in aircraft is a relatively new development, it has made
significant advances in the last few years. The speed, cleanliness, and reliability of the concept
make it an ideal system for all forms of transportation.
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Des1GN CONSIDERATIONS WILLTIAM STONE

FOR M1CROWAVE HEATING
Raytheon Company

oF Space Foop

This is a conference to discuss aerospace food technology, and at first thought such
discussion seems far removed from my experience in Raytheon's Industrial Microwave Process-
ing Department. Our concern has been the speedy processing of large quantities of food but this
is not applicable in space vehicles. If NASA were considering conveyances with many passengers,
we could discuss our conveyorized microwave system for heating meals quickly; however, I have
been led to believe that it may be some time before this will be necessary. It appears that we must
think small and light for NASA.

Along the foregoing lines the use of highly efficient microwave heating should be considered
if hot meals are desired. This leads to the question: Why should microwaves be used in a space
application instead of a forced-air convection oven or some other more conventional form of electric
heater ? The answer is the claim to fame of microwave heating; energy is converted to heat inside
the food and is not used to heat the walls and air inside the oven.

I know of no unit currently available that would satisfy the needs of a space vehicle. There
is, however, a 91-1b microwave oven being mass produced by our Amana division. This appliance
was designed for the consumer market wherein heavy emphasis is placed on chrome trim, port-
ability, and price.

A redirection of emphasis, with reliability, weight, and size as the prime requirements,
could produce a usable piece of equipment for space vehicles. Factors to be considered in such a
design are power supply, energy source, applicator (or, as it is commonly called, oven), con-
struction materials, controls, food, and radiation.

Reliable, light-weight power supplies now exist for space applications. There is no doubt
that a design specifically for this application is not too far away.

There are many factors to be considered in the selection of an energy source, which is
the heart of a microwave heating system. Of prime importance is the power output. This should
be the minimum amount necessary to heat the food, since this amount is directly related to the
amount of power drain from the vehicle's electric system. Frequencies other than the commonly
used 2450 mHz could be investigated. The FCC has allocated three other frequencies for this usage,
namely, 915, 5850, and 22 125 mHz. Very little has been done at the two higher frequencies where

parameters are generally smaller.
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Our experience in producing high-power microwave generators which have efficiencies
over 80 percent could be extrapolated to a lower power generator. To replace the present fairly
heavy electromagnet, a permanent magnet utilizing Raytheon's new light-weight samarium cobalt
magnet material might be considered.

Since the applicator (oven) is the part of the equipment which contains the food, its design
should be conditioned by the size and shape of the food packag;, to be heated. This requires an interface
between microwave-oven and space-food designers. Most present-day microwave ovens are de—
signed to be universal in use so that any process from heating a cup of soup to completely cooking
a large roast is possible. An exception is the small unit in coin-operated vending machines used
to heat sandwiches which are stored in a nearby refrigerator.

The use of strong light-weight materials in the frame and power supply is one area which
warrants investigation. It may be possible to save congiderable weight in the cavity by painting,
plating, or laminating a microwave conductive coating over a light-weight plastic form to replace
the usual, heavy stainless-steel cavity.

A wide variety of controls exist which function very well and extremely reliably. It
appears that not much more than a weight-reduction program need be launched.

From a microwave engineer's point of view, the food should always have the same die-
lectric parameters, be of uniform density, and completely load the cavity electrically. As pre-
viously mentioned, microwave engineers and food technologists should jointly discuss these
problems.

The intent of the design should be to cook food - the heat should not be wasted on equipment
or people. Many excellent radiation containment techniques that may be made lighter in weight for
use in a space vehicle now exist.

In summation, the design of a microwave heating unit for space vehicles is quite feasible
within the current state of the art.
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INTEGRAL HEATING JOHN M. MAHLUM
FQuIPMENT DEVELOPMENT 3M Company

The 3M Co. is pleased to have been invited to say a few words in explanation of integral
heating. A number of speakers have referred to our development as a new concept for cooking food
and they mentioned our laboratory work as well as our activities with the commercial airline indus-
try.

Frankly, it is much too early in the development of this concept to articulate specifically
on costs, performance under varied conditions, etc., and, therefore, we are not yet at the point
where we are actively selling this method in any gpecific form to the public. We do have great con-
fidence in the potential of this technology. We do have behind us a substantial amount of laboratory

work and, as reported by others, a successful evaluation by American Airlines of this system.

- Tests have been run for 7 weeks under normal operating conditions where our system has been used

to reconstitute typical airline frozen meals with fine results in terms of quality of food and perfor-
mance of the equipment.

Integral heating is accomplished from a resistive coating applied to a surface area. The
coating can be applied in a variety of manners, its composition is of a variety of materials, and it
is applied to become an integral portion of the surface areas from which it is intended to deliver
heat directly to food. It uses the principle of low watt density, is unrestricted in terms of the sur-
face area required, can accomplish contours of any kind, and basically has the capability for
"putting the heat where you want it. " It is not restricted to one composition of materials and, of
course, the choice of materials and the manner of processing same is proprietary to 3M.

Integral heating provides:

(1) More efficient heat transfer. The low mass and large surface area is supplemented
by choice of low-thermal-capacity materials which give up their heat quickly to their surroundings,
i.e., food.

(2) Quick response. The surface heats extremely fast and also cools extremely fast when
energy inputs are reduced. It is therefore controllable and responsive to critical demands.

(3) Minimal residual heat problems. Conventional flame or high-watt-density heating ele-
ments, such as a calrod type, are nonexistent. Heat developed on the cooking surface is removed
by the food, with the "heating surface" temperature climbing the temperature scale parallel to the
food being heated and rarely exceeding a surface temperature of more than 10 percent that of the
food.
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(4) Easy programing. Control of the input energy with electric-electronic components
permits a variety of performance levels. This, in turn, makes it possible to match the requirements
of the food with simple control adjustments giving the integrally heated 3M system the maximum
possible versatility.

In lay terms we may say that, in the average home, two-thirds of the energy of all conven-
tional cooking devices is wasted. Integrally heated surfaces operate at better than 90-percent effi-
ciencies. It can also be said that integral heating operates with the fast response of gas, with the
convenience of electricity, and without the danger of either.

As a means of explaining the system further, we will use the 3M in~flight food service sys-
tem as a reference. The hardware for this system has been developed and used in flight tests and
can be said to be generally commercially acceptable. Such a system can operate in commercial
aircraft and military aircraft; aboard ships and submarines; in land-based facilities such as hospi-
tals, colleges, and restaurants; and in almost any facility where for some reason there is an ad-
vantage to preparing the food, chilling oi' freezing it, and bringing it back to edible temperature at
a later date or at a remote location from that where it was prepared.

The design of the system includes the following equipment:

(1) An outer oven shell. This unit is thermally insulated and can be installed permanently
or temporarily into the area where you wish to do your cooking. The control units are appended to
this shell and this becomes your operational center. ILet me emphasize that this is not a classic
oven - the walls do not get hot and there is no induced air circulation.

(2) An interior oven shell or rack. This rack contains electrodes which carry the electric
energy to the dish; it has a series of trays which slide in and out and nest the dish. It also serves
as the means by which the dish and food is moved to and from the kitchens.

(3) A casserole dish. This is the item which is integrally heated. Tt transforms the
electric energy to heat and delivers the heat to the food. A combination of these three pieces of
equipment in a variety of styles makes up the system. Each of the three components is necessary
for the system to operate properly.

I'would like to comment now on general performance requirements in developing any new
food service system. There is always an interchange phase of going from the old method to the new.
We found it essential that this system of ours be versatile. We therefore have programmed it to
handle all three types of food preparation - frozen, chilled, and previously cooked and held as warm.
Performance in general had to be fast and we have established a parameter of reconstitution of 10
to 12 oz of frozen food mixes (i.e., meat, vegetable, and starch) in 15 min or less, and we also
built into the system the capacity of holding the desired temperature for a substantial period of

" time. Also the unit is capable of being utilized as either an oven or refrigerator, or a combination
of these two.

The reliability of the system and its parts is of course a primary concern. It is necessary
to have interlocking components, that is, a free interchange of parts to the system from one unit to
the other. All parts have been designed to withstand physical demands and operational demands of
both refrigeration and heating plus those of the more mundane facts of life such as commercial
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dishwashing facilities. It is interesting to note that in this system we are limiting the potential
lability or failure of the oven to function down to the lowest possible minimum. That is, each indi-
vidual service of a meal is where the energy transfer is made, and therefore it is most likely that
our liability is related to that one unit rather than to the total system.

There are many advantages that can be built into a new system and we have attempted to
appraise these. Of course, the concern for storage and hence the need for stackable units is a con-
gideration in any high volume operation. We have selected stainless-steel Welded construction for
its obvious characteristics of strength, cleanliness, and general acceptability when exposed to food
environments.

The casserole was designed to withstand tremendous physical abuse and choice of a china
or glass porcelain innerface was made because of its heatproof, stainproof, scratchproof, odor-
proof, rustproof, fadeproof, and ageproof properties. Not the least of its properties is its low
bacteria retention level, which is superior to that of almost any other material. The casserole
was designed to withstand cryogenic temperatures as low as -350° F and will operate at surface
temperatures of 600° F, which is the generally accepted maximum cooking temperature. We have,
in fact, eliminated the intense heat source or high-watt density factor found in most ovens.

Our total performance is accomplished with a lower power consumption. We use a given
amount of power to get the job done and this is a prerequisite. However, our efficiency results in
less power waste; therefore, the power consumption per unit time is substantially less than that of
conventional ovens.

Since there is no concern for airflow within the oven shell, the oven itself can be of almost
any size and shape. Styling is alsoa factor and the system permits choice of size, shape, and color
and generally is unrestricted. Use of modern updated electric-electronic materials permits ver-
satility in controls and performance of the system.

I would like to make a few statements on the general premise from which we justify our
performance claims. Table I is a study of the heat balance required to process a typical 10-oz food
mix from a 0° F storage temperature to a 180° F "piping hot' condition. Note that less than 5
percent of the total BTU requirements are needed to raise the food temperature from 0° to 32° F.
Approximately 45 percent of the energy is required to accomplish the heat of fusion or melting and
an additional 45 percent is required to accomplish the sensible heat from 32° to 180° F. Approxi-
mately 8 percent of the total energy demand is used in bringing the casserole dish to proper tem-
perature, and, thus, it can be said that in this example approximately 92 percent of the energy
drawn is put to a worthy cause, that of heating the food. Using materials of low thermal capacity
is working in favor of the system. I might point out that in a frozen storage condition the food will
also stay cold longer inasmuch as the casserole dish does not deliver heat to the food and thus warm
it up. One might compare the casserole dish to a thermos bottle. It works ideally whether the end
product is to be hot or cold.

Table II indicates that we can transfer the power or watts required for a given meal to a
heating-time relationship and we say arbitrarily that if you deliver 240 W for 15 min you will ac-

complish the delivery of BTU's consistent with our previous heat balance study.
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TABLE I.-HEAT BALANCE

Process agTy % total

10 oz of food

Heat to raise from 0° F to 32° F

(10/16)x 0.5 x 32 = 10 4.8
Heat to thaw
(10/16) x 144 = 90 43.1
Heat to raise from 32° F to 180° F
(10/16) x (180 - 32) = 92.5 44.3
Casserole

Heat to casserole
0.9x0.1x180= 16.3 7.8

Total 208.8 100.0

4908.8 BTU = 61 W-hr.

TABLE II. -POWER LEVEL AND HEATING TIME

Heating time, Power level, W
min
60 61
30 122
20 183
15 244

In any and all heating systems it is necessary to transfer energy from a source to that
which you want to receive it. Figure 1 is an enlargement of a casserole or heating surface bottom;
the circles indicate the four points of temperature level. We use a typical convection oven as an
illustration. At the top we will assume that we have a 1200° to 1800° F calrod unit. We depend on
air to bring this heat to the proximity of our container carrying the food. In passing through this
air space, it eventually encounters a stationary air film. As indicated, this is a thin film of air

surrounding the surface of any material. There is, of course, a temperature drop at the point
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where it hits this air film. At this point a severe loss of efficiency, or a large A T, is realized.
This large temperature drop is inherent in all air-conducting systems and it is minimized somewhat

by high-velocity air movement. At the point where the energy or heat reaches the casserole or dish

bottom, it passes through the casserole bottom at some predictable rate and emerges to contact the
food. The net heat or BTU absorption of the food is a small portion of that generated at the power
source. The 3M Co. is successfully introducing the source temperature at the casserole bottom, com-
pletely bypassing air films, and therefore realizing a very low & T drop from its delivering point un-
til it reaches the food. In addition to that, as we have mentioned before, the thermal capacity of the

dish is restricted. This principle guides our thinking in developing integrally heated devices. We look,

forward to any comments you might have regarding possible applications of this principle.
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Boeing 747 Lower LOBE GALLEY C. V. LINDOW
SYSTEM INTEGRATION The Boeing Company

System integration for practical purposes is the assembling of many components, with
proper forms of interaction and interdependences, into a whole system to perforin some function.
The system that I shall discuss is the Boeing 747 lower lobe galley and its function to store pre-
pared meals and beverages and to enable trained personnel to present them to the passengers in
an elegant and timely manner. Iam, therefore, discussing only that part of the food and beverage
provisioning and serving system that begins at the entrance to the airplane.

First, let us consider the reason that we are interested in a lower lobe galley on any air-
plane. The net effect of lower lobe galleys on airlines is illustrated by listing the advantages and
disadvantages as follows.

Advantages to airline:

(1) Increased main-deck seating capacity

(2) Utilization of cargo/baggage loading equipment to service galleys

(3) Minimized main deck congestion during passenger loading

(4) Minimized ramp congestion during ground servicing

(5) Equipment interchangeability with other airplane types

Disadvantages to airline:

(1) Reduced lower lobe cargo capacity

(2) Increased airplane empty weight

(3) Increased airplane cost
A principal advantage to the airlines is an increase in the main-deck seating capacity of any air-
plane of a given length, and this is a function of the original main-deck galley and seating arrange-
ment. In the case of the 747 the capacity can vary from 4 additional passengers to over 30.

Since a lower lobe galley is on the same level as the cargo and baggage area, the cargo/
baggage loading equipment can be utilized to service the galleys. This eliminates the high-lift
commissary service truck, an expensive piece of equipment. If we do not need to service galleys
through the main-deck doors, passenger loading and cabin cleaning can be continued without in-
terference from the galley loading. If we have fewer vehicles on the ramp through use of the
cargo vehicles for galley servicing, we have less congestion in an extremely congested place. Some
airlines have an additional incentive - that of equipment interchange with other airplane types.

There are some disadvantages to the airlines. First, the overall cargo capacity is re-
duced because of the space that is taken up by the lower lobe galleys. Inthe case of the 747,
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this amounts to about 2000 cu ft of cargo capability. The airplane empty weight is increased be-
cause of structural provisions, elevators, and other factors. And, of course, the airplane costs
more. It is clear then that a lower lobe galley is not optimum for all airlines and is therefore an
option on the 747.

The principal system requirements are as follows. In the food category we need to store
and serve two complete meals with a beverage service on long flights. For the 747, this requires
the storage of 800 meals. It is necessary to be able to serve a beverage and an adequate meal on
flights as long as those between Chicago and New York; such long flights require 400 complete
meals. Particularly on long flights we need to provide a reasonable choice of entrees, say 20 per-
cent, and to reduce the spoilage and waste of unused frozen entrees. Incidentally, the prime mode
of operation of the 747 lower lobe galley is based on the use of frozen entrees. A second mode is
to use chilled foods rather than the frozen entrees, and a third mode, which we do not expect to be
used very often, is to load warm entrees onto the airplane and keep them warm.

In the seating area there is a requirement to increase the number of passenger seats to
the maximum consistent with the cabin arrangement and at the same time to maintain and enhance
the already considerable passenger appeal of the basic 747.

In the ground servicing area it is desirable to reduce the congestion from maintenance,
commissary, and cabin-cleaning personnel and eliminate the obstruction of passenger movement
adjacent to the galley and in the cross-aisle areas. Eliminating the galley replenishing activity
on the main deck of the airplane enables earlier passenger loading and tends algo to reduce the
through-stop or turnaround times of the airplane. It eliminates high-lift commissary service
trucks, those with beds extended to about 17 ft. We would rather use the lower 10-ft cargo/baggage
loading system for loading the galleys and so reduce wear and tear on the interior and exterior of
the airplane.

In the technical area we must maintain a satisfactory level of noise, ventilation, lighting,
and temperature in the lower lobe galleys for the benefit of the attendants who work there during
the flight. Safety, reliability and maintainability must be kept at their present levels, and weight
must be kept to a minimum. The airplane structural and system changes must be minimized to
reduce costs and flow times. In addition, it is necessary to meet U.S. Public Health Service Regu-
lations.

In the management area we have a requirement to create a common 747 lower lobe galley
for two of our airline customers and a requirement to utilize some equipment interchangeability on
the Boeing 747 and the McDonnell Douglas DC-10 airplanes of those particular airlines. We, of
course, have a Boeing requirement to design for a broad 747 market appeal.

Now, if we assess the meaning of system integration in the framework of the foregoing re-
quirements (fig. 1), we have a Boeing 747 lower lobe galley, McDonnell Douglas has a DC-10 lower
lobe galley, and in each case there are Airline A requirements and Airline B requirements. Boeing is
striving for a common 747 and McDonnell Douglas is striving for a common DC-10. We all recog-
nize that in both cases there will be requirements unique to each airline. The task at this stage

is to reconcile all these requirements to yield, as far as possible, a common lower lobe galley
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concept. At the same time there will continue to be certain situations
and, within these, features peculiar to each airline.
specifications for purchased equipment or drawings
tionally, most of our aircraft subsystems ar
results in a complete airplane, including a completely functional lower lobe galley system.

Now that we have outlined the tasks of system integration,
sulting configurations a

Forward of the wing is a forward lower lobe galley complex.
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Figure 1.-747 lower lobe galley system integration.

and a 2-unit service center on the main deck.

Figure 3 is a view through the airplane cross section.
plane are 3 refrigerated modules about 60 in. long,
stowage areas above which can accommodate refri

the airplane is a freezer module, which i

food and can contain 480 entrees and ice cubes.

747, and the airplane can carry 960 entrees.

contains 4 liquor carts

set up for two complete liquor services.

gerated food or dry stowage.

nd solutions. Figure 2 shows a typical interior arrangement of the 747.
In the case of the 747, there is also

an aft lower lobe galley complex aft of the wing. Each complex is composed of a

unique to the 747 or DC-10
Out of this work come definitive requirement
for equipment which is built inhouse. Addi-

e affected to some extent. Integrating all these factors

let us look at some of the re-

lower lobe galley

On the right-hand side of the air-
each of which contains 4 tray carts and has

On the left side of
s controlled to 0° F for frozen food or 40° F for chilled
Remember that there are 2 identical galleys on the
The next module is the
The third module, which is partly

liquor-cart module, which
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obscured behind the elevator, contains the entree and waste carts and on it a dry-stowage module.
Above the shelf 4 ovens are fixed to the airplane; each is designed to reconstitute 0 enfrees in
35 min.
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l Figure 2. -Interior arrangement of the lower lobe galley for the 747.

The small box above the entree module is the electric control center for the galley. The
elevator on the left can be used either for moving stewardesses or carts. The elevator on the
right is open and is used for carts only. These emerge in the service center on the main deck.

Figure 4 shows the two elevator doors, coffeemakers, and dry stowage above the counter,
with a mechanical refrigerator and dry stowage below. An intercom system is -provided so that
main-deck and lower lobe attendants can talk without going through the airplane telephone system.
On the other side of the cross aisle is the aft unit of the forward service center (fig. 5). On the
two ends of the units are closets accessible from the longitudinal aisles of the airplane, with maga-
zine racks above, There are three additional coffeemakers, thus providing six in each service
center. A waste cart is positioned in the right-hand outboard position under an opening in the
counter through which waste may be thrown into the top part of the waste cart. The bottom part
of the waste cart has separate drawers to enable the separation of soiled reusable articles from
disposable items. The aft unit containg spaces wherein two additional carts can be stored, and
these are serviced with electric connectors for keeping entree-cart contents heated, if required.

All the vendor-supplied equipment that I have mentioned is being procured under Boeing
specifications as shown in table I. You will note that all the equipment except that indicated will
fit and function on both the 747 and DC-10.
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Figure 3.-Cross section of airplane.

One of the primary means of deciding whether system integration has been accomplished
is to carry out a system test. Figure 6 shows the logic for the lower lobe galley and module handling
system tests. Vendors provide prototypes and preproduction articles and perform qualification
testing on the articles they provide. Some of these articles are run through the Boeing-Everett
laboratories to accomplish component and spbsystem verification tests. Those that pass the tests
go to our lower lobe galley functional test vehicle for verification of performance in a whole system.
From there then we have two paths - those items which are involved in our lower lobe galleyl module/
cargo/baggage handling subsystem go into that particular part of our organization to be tested in
appropriate test vehicles. The others go into our first aircraft of this type for ground testing and
for flight testing. To explain this more fully, our lower lobe galley functional test vehicle (fig. 7)
is the equivalent of part of the forward section of our airplane; it is set on the floor so that we can
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Figure 4. -Forward unit of forward service center of
747 lower lobe galley.

work conveniently with it throughout the program. After completion of this testing we will be
satisfied that the system will in fact function in accordance with the standards which we have es-

tablished. The airlines then will provide hostesses and procedures appropriate to their meal
services.
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Figure 5. -Aft unit of forward service center of 747 lower lobe galley.

TABLE I.-747 LOWER LOBE GALLEY PROCUREMENT SPECIFICATIONS AND VENDORS

Number Title Vendor
60B50102 Oven assembly, general purpose, electric Sell Haus
60B50103 Coffeemaker, electric REF Dynamics
60B50104 4Galley service centers Hitco
60B50105 AFlevator system Airesearch
60B50107 Liquor cart assembly - lower lobe galley

60B50108 Tray cart assembly - lower lobe galley

60B50109 Entree cart assembly - lower lobe galley

60B50110 Waste cart assembly - lower lobe galley

60B50197 Cart base assembly - lower lobe galley

60B50111 Insert, refrigerator/freezer - service center REF Dynamics
65B50112 Coffee server retainer

60B50165 agink/equipment console - lower lobe galley Hitco

ayill fit and function on both 747 and DC-10 except as noted.
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TABLE 1. - Continued

747 LOWER LOBE GALLEY PROCUREMENT SPECIFICATIONS AND VENDORS

Number Title Vendor
60B60010 Tray cart refrigerated module JFairchild Hiller
60B60011 Freezer module Fairchild Hiller
60B60022 Liquor and entree cart modulesg Fairchild Hiller
60B50172 and Stowage drawers, miscellaneous - lower lobe galley
60B50179

Vendors

® Prototypes

® Preproduction
e Qualification

—>

Everett Lab

Component and Sub-
System Verifi-

Testing cation
A 2
Everett Lab
LLG Module - LLG Test Vehicle
H . System
andling d Verification
Aircraft
® Ground Test g

® Flight Test

Figure 6. -Logic for lower lobe galley and module handling system test.
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Figure 7.-Lower lobe galley test vehicle
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Foop SYSTEM INTEGRATION L. W. KING
RESPONSIBILITIES OF (Presented by B. F. Monroe)
A1RFRAME MANUFACTURERS Lockheed-California Company

A majority of the world's commercial air carriers are involved in a profit-motivated
business venture in competition with other carriers. Achievement of a favorable profit picture re-
quires good management, a good route structure, aircraft that will operate reliably and economi-
cally, service to maintain a satisfied clientele, and an active promotional campaign to maintain
and, hopefully, expand the volume of service.

The airframe manufacturer is directly involved in the design and production of an aircraft
that will operate reliably and economically and incorporate features that will permit the airline to
provide service of a quality necessary to maintain a satisfied clientele. Reliable and economical
operation is a direct result of establishing design criteria commensurate with the operational use
of the aircraft, developing sound structural and functional system design, selection or development
of qualified components, conducting a comprehensive test program leading to certification, and
providing postdelivery field-service logistic support. These factors must obviously be backed up
by adequate levels of in-service maintenance provided by the alr carrier. The airframe manu-
facturer's involvement in providing service of a quality to maintain a satisfied clientele is indirect
since the ultimate responsibility must lie with the individual carrier. The airframe manufacturer
is directly responsible for producing equipment incorporating features with the capability of pro-
viding services within a latitude acceptable to the carrier's customers. Quick-change kits, cargo
systems, and food service equipment are typical examples of this area of responsibility.

The introduction of the passenger into the operational environment adds complexity al-
most beyond belief to the air carrier's normal equipment concerns. The bulk of passenger fare
revenue is paid by the experienced traveler and generally to support business activities. Surveys
have indicated that this experienced traveler is not always aware of the number of engines that
propel the aircraft, is less aware of the airframe manufacturer, and smiles politely when made
aware of the number of hydraulic systems, the advantages of full power over manual reversion
flight controls for large aircraft, and the flexibility of the electric system where the generators
may operate either in parallel or isolated. This passenger is mainly concerned about his immedi-
ate surroundings, the cabin crew, and the food and beverage service. Adherence to flight sched-
ules and prompt baggage delivery round out the passenger's criteria for evaluation of the air

carrier.
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The air carrier whose services are oriented toward the fare-paying passenger is com-
pelled to seek ways to cause these passengers to wish to return for subsequent trips. Since, from
the passenger's viewpoint, there is little to offer in the area of differences of basic equipment, or
aircraft, between carriers, individuality must be expressed in terms of the cabin decor, spacious
accommodations, in-flight entertainment, and food and beverage service offered. Food and beverage
service provides an excellent source of in-flight entertaimﬁent, especially on short-duration flights,
and complements the in-flight motion pictures to occupy virtually the entire time required for a
transcontinental flight. m terms of support requirements, the food and beverage service is fully
as complex as many other aircraft functional systems when compared to their interface with both
the aircraft and ground equipment. Recognition of this service and its importance places the air-
frame manufacturer in the position of system integrator with prime responsibility in the area of the
aircraft and a secondary role for ground equipment and support facilities.

SCOPE OF INTEGRATION TASK

Developing an operational food service must be a joint responsibility of the airframe manu-
facturer and the air carrier. The economics of most air carrier operations would preclude acqui-
sition of all new equipment and facilities especially designed for the new generation of aircraft.

New support equipment must, obviously, be acquired to support the requirements unique to new air-
craft, but the major portion of the equipment and facilities will be upgraded only as required as the
new aircraft is integrated into parallel operation with the carrier's fleet. As the older aircraft are
phased out of operation and their facilities and equipment become obsolete, the ground-based part
of the system will be upgraded systematically to, or perhaps beyond, the requirements desired for
the most efficient operation with the aircraft.

The major elements comprising the air carrier's food system are the aircraft galley, the
service vehicle(s), and the commissary. Although the integration of the galley and the aircraft
is primarily the responsibility of the airframe manufacturer, it is design oriented toward current
operational equipment and facilities to' minimize obsolescence, improve system efficiency, and
improve airborne equipment performance. Cooperative pooling of equipment by air carriers can
impact this process of optimization for both airborne and ground equipment as well as for facilities.
The air carrier, necessarily, has the primary responsibility for adapting the ground equipment
and facilities to accept the new aircraft as it enters service. This adaptation or upgrading of
facilities must be accomplished in a timely and systematic manner to accept not only the new air-
craft but subsequent models. The airframe manufacturer must contribute to this planning effort
by defining the interface between the aircraft and the ground equipment and facilities.

SYSTEM INTEGRATION TASKS

The design of a galley system and its integration into the aircraft requires that the airframe
manufacturer define the objectives of the system, develop equipment performance and aircraft sup-
port requirements, describe the elements of the airborne system, and specify the details of the
interface between the aircraft and the ground equipment and facilities.
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The objective of the aircraft food system is to provide high-quality, palatable, nutritious
food in an attractive manner to the passengers within the constraints of time as established by the
specific flight segment. The food that is to be served to the passenger must be of a quality at least
as high as that served in a good restaurant. The food must be attractively arranged, at the appro-
priate temperature, and presented to the passenger in a manner reflecting a personal interest in
him. The nutritional value of the food is subject to debate, but it is anticipated that this quality
should fall into the same general pattern of food service objectives.

Food service system requirements will be based upon the above objectives and will con-
gider the aircraft as it is to be placed in service. Establishment of these requirements will be
accomplished after a review of the air carrier's route structure, commissary facilities, support
equipment, and operating personnel. This process becomes more complicated when the galley sys-
tem is provided as an integral part of a type of aircraft to be delivered to several carriers. Pro-
viding a common galley system is not as impossible as it may appear. Equipment performance is
generally determined by the time ccustraints of the shortest flight ona carrier's route structure
and the storage volumes and weights established by the quality of food service. Since most carriers
feel that the 60-min block time is the shortest flight for a full hot-meal service, this time becomes
the design point for the airborne equipment. The minimum cabin crew requirements are estab-
lished by the cognizant Government regulatory agency and generally the carriers are able to per-
form all food service to the passengers with this crew complement. Short, high-density flights
may require additional cabin attendants to perform an adequate and timely food service. The
storage volumes required by most carriers to support their food éervice do not vary appreciably
and when one analyzes the flow of food service to the passengers, equipment location, and storage
space allocation, the standard galley starts to come into focus. For carriers whose service re-
quires storage volumes in excess of those available, optional galley support units can be provided,
possibly by removing passenger seats or reducing seat pitch to gain the required space.

The commissary plays a vital role in the food system and, although its operation and
equipment is the prime responsibility of the air carrier or his caterer, the airframe manufacturer
must consider the capability of this facility in designing and equipping the galley. The food pre-
pared in this commissary must be tailored to the capability of the airborne equi.pment, and the food
must be prepared prior to the loading of the galley. When precooked hot food is brought aboard the
aircraft, the capability to hold this food at the proper temperature must be provided. Cold foods
must be kept cool either by insulation or by refrigeration. Hot foods must be kept at temperature
without overcooking or excessive drying. Cooking of raw foods and reconstituting of frozen foods
is gaining in popularity, and improved ovens are required to perform this task. Beverage service
presents requirements for coffeemakers, water boilers, ice making or storage, soft drinks and
liquor. The commissary is charged with the responsibility of providing the food and beverages,
tailored to the capability of the galley and its operating personnel. Additionally, the commissary
ig responsible for refurbishing galley equipment on the return cycle from the aircraft and disposal
of waste. The handling of the galley equipment in this ground-based pipeline presents some rather
rigorous design criteria for the airframe manufacturer supplying the galley and for the commissary
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The United States Public Health Service regulations cross all boundaries from the com-
missary to the galley and establish handling, cleaning, and food processing requirements.

The commissary van or galley transporter is required to close the gap between the air-
craft galley for both the galley loading and unloading cycles. This vehicle must contain adequate
facilities to store all food and support equipment in a manner that will not degrade the quality of the
airborne food service. In the event that one vehicle is used so that traffic and congestion about the
alrcraft is minimized, it must also be capable of providing adequate volume to accept the return-
ing galley equipment and waste. This return-cycle volume is generally greater than that required
for loading the galley because of the disarray typical of the hurried postservice pickup aboard the
aircraft. The commissary van must also be capable of positioning itself properly to permit loading
and unloading of galley equipment.

ATIRCRAFT AND GALLEY INTEGRATION

The airframe manufacturer is fesponsible for integrating the galley into the aircraft after
the basic requirements have been established in conjunction with the air carrier. The type of ser-
vice is, necessarily, established by the carrier and is, in turn, reflected in food service system
requirements. These requirements are the basis for establishment of the design criteria for the
galley system and its equipment.

The galley system and its elements will be developed to permit performance in compliance
with customer requirements. The galley concept, as related to food preparation and service capa-
bility, must then be established. Once the concept is determined, galley size and location will be
established. The size of the galley will be partially dependent upon the concept of food service
mode, handcarried tray or cart delivery service, but principally established by the heating, cool-
ing, storage, and beverage support equipment. The location of the galley facilities will consider
factors such as potential seat loss, service class divisions, traffic flow during food service to the
passengers, ground-service access, weight, and cost. For either cabin-level or lower-deck gal-
leys the number of units will be determined by ground-servicing and cabin-traffic flow during pas-
senger service. The location of the galley on the cabin level or lower deck will be based on trade-
offs involving the comparative value of passenger seats, cargo capacity, and anticipated load
factors. The Lockheed L-1011 underfloor galley releases sufficient eabin-level space to permit
increasing seating capacity by 20 seats. When the lower-deck galley is adopted, food service carts
are required to transport the food and beverage to the passengers. Elevators are used to move the
carts between the cabin and the galley. Thése carts may be used in service to individual passen-
gers or secured in a convenient position and so that they function as a satellite from which food is
served to the passenger and to which waste is returned. Hot beverage service will be provided
from the cabin-level galley units. When the lower-deck galley concept is utilized, hot beverage
service from the galley is impractical and it is advantageous to locate food service support units
at strategic locations on the cabin level.

Once the galley size and location have been established, the equipment and storage arrange-
ment will be configured. Individual pieces of equipment will be located with consideration to their
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frequency of use, working height, weight of material handled, and other factors. When locating
equipment one should also consider grouping the electric, water, drain, and communication services
to achieve minimum éomplexity and weight and maximum safety. The design of the galley units and
the equipment must be in compliance with certain Government regulator documents. Federal avia-
tion regulations are primarily concerned with the structural and flight safety aspects of the galley
units and require qualification through test or analysis, in some instances, for certification. The
U.S. Public Health Service establishes the standards for galley sanitation, and aircraft operated

by carriers within this country must operate galleys certified by this agency.

The galley system as installed in the aircraft interfaces with the electrical, environmental
control, water, lighting, and possibly hydraulic systems. Structural attachments are required,
and the units must be trimmed in a manner compatible with the area of the aircraft in which they
are located.

Electric power is required by virtually all functional equipment within the galley system.
The load requirements of the ovens will be the greatest single factor. This load will depend on the
types of food to be prepared and the amount of time allocated for cooking or heating. The air carri-
er's philosophy for entree preparation can grossly impact this oven requirement by requiring power
only for holding hot food at temperature or cooking of raw frozen food. The trend of improving
quality of food will result in a greatly increased use of precooked frozen foods and later, raw foods,
as ovens with improved performance are developed. Coffeemakers and water boilers used to sup-
port the hot beverage service will probably be the next largest electric power users. Brew time
or water heating rates will establish peak loading and the old-mode power will fall within these peak
requirements. The use of an icemaker aboard the aircraft will present a fairly large electric power
requirement almost completely dependent upon ice production rates. The electric power consump-
tion by the cold-storage units is relatively small by comparison, as is that of bun warmers, hot-
plates, and hot cups. The total electric load analysis for the galley system will consider all indi-
vidual loads and the typical duty-cycle characteristics in the ﬂight service environment. Peak
loads and equipment duty cycle will then be integrated into the electric system total power loading
and control. The electromagnetic interference characteristics of the galley equipment must also
be considered for compliance with standards established for the aircraft.

The galley and its equipment will be dependent upon the environmental control system (ECS)
for cooling and ventilation. Heat generated by the ovens, coffeemakers, hotplates, etc., will be
rejected to the cabin area. For the lower deck galley this heat will be rejected to the galley itself,
which will be established as a separate temperature zone of the ECS. Mechanical refrigeration
systems must be provided with condenser cooling air and equipment cavities in galley cabinetry
will be ventilated. Cabin exhaust air can be utilized for this function before it is ducted overboard
through the pressurization outflow valves. Greasy or moisture-laden vapors generated by the
galley must be ducted overboard in a manner that will preclude accumulation of grease with a re-
gultant fire hazard and that will minimize condensation within the aircraft in inaccessible areas
that will promote corrosion.
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Water and drain facilities will be required at all water stations and to the coffeemakers
and water boilers. Flow rates for the water supply must be established along with the acceptable
bressure range. Equipment characteristics and water system performance must be properly es-
tablished to ensure compatibility. The types of connections to these services must be specified
with consideration for the reliability, maintenance characteristics, and installation peculiarities.
Special attention must be given to the design of all equipment to insure proper draining when the
airecraft is subjected to cold-climate environments. Design of the equipment and the water system
interface must also consider U.S. Public Health Service standards.

The task of integrating the galley installation with the aircraft structure will vary con-
siderably with the galley location. The greatest variance will be between the cabin-level and
lower-deck galleys. Cabin-level galley units must be designed to resist crash loads while lower-
deck installations will be designed on the basis of limit flight loads. Cabin-level installations will
vary somewhat in mounting requirements between centerline and side-wall units. The structural
integrity of the floor beams must be ascertained or provided for the cabin-level installation. Gen-
erally, overhead stabilizing structure will provide the lightest weight cabin-level installation. The
lower-deck installation is of a quite different character since the galley becomes an integral part
of the aircraft with somewhat simpler equipment installations. The larger centralized volume of
this type of galley permits a more localized and efficient equipment installation. Corrosion and
odor control practices consist of eliminating areas that could trap liquids and sealing off areas
that could absorb or trap liquids. Special paints or coatings may be utilized in areas likely to be
exposed to liquids to minimize corrosion. Design standards should be established to facilitate
cleaning by providing smooth surfaces and rounded corners, sealing all faying surfaces, and utiliz-
ing the maximum practical number of flush fasteners. Spillage and condensation should always
accumulate in accessible locations where cleanup is readily accomplished.

The successful integration of a galley system into an aircraft requires that a few basic
ground rules be followed. These rules are common to installations involving two or more systems
and are as follows:

(1) Establish performance requirements

(2) Define design criteria and constraints

(3) Describe system elements

(4) Determine interfaces

(5) Design system installations

(6) Communicate constantly with affected groups

L-1011 GALLEY SYSTEM

Lockheed-California Company organized the 1-1011 Preliminary Design Group early in
September 1966. At this time, studies were conducted out of which the basic galley system evolved.
The Lockheed L-1011 incorporates a galley under the floor of the passenger cabin. This galley is
but one part of the airborne food service system which also includes two elevators, three cabin-
level service centers and the food and beverage service carts. This galley system is included as

an integral part of the basic aircraft.
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The underfloor galley occupies an envelope 239 in. long, 164 in. wide, and 74 in. high and
is located forward of the wing box. The lower corners of this volume are cut off by the main struc-
tural rings and leave a flat floor width of 96 in. The total usable volume of this envelope is 1 584
cu ft. The entire compartment is sealed off from the aircraft and liquid flow paths follow down the
gidewalls along internal contour and lead out onto the galley floor, where spillage is observable for
easy cleanup. All galley equipment is hung from the floor beams or mounted on standoffs from the
sidewalls to maintain an guninte;‘rupted flow path down the walls and out onto the sealed floor. A
secondary seal in the form of plastic pans is provided beneath the galley floor to insure against pos-
sible leakage through the galley floor reaching the bilge area of the aircraft where it would create
corrosion problems. Warm air from the electric load center, which is located between the secon-
dary seal and the galley floor, is circulated to dry any leakage and to keep the galley floor warm.

The underfloor galley is equipped with ovens, cold-storage units, an icemaker, dry-
storage cabinets, a work counter, a bun warmer, a waste-disposal area, an intercom, and a cabin
interphone. The galley is air-conditioned and lighted and provides parking areas for 18 food and
beverage service carts. The ovens to be developed for the galley will be of an advanced design
capable of reconstituting frozen entrees, or cooking raw frozen entrees, in 2 nominal 20 min. The
oven will also be capable of cooking raw chilled food or heating chilled precooked food. Cold-storage
units installed in the galley will be capable of holding chilled foods at 38° F or frozen foods at -10° F.
An icemaker provided as a part of the galiey equipment will have a bin capable of maintaining ice
in a dry condition and will hold 50 1b. The icemaker has a production capacity of 30 1b clear ice/hr.
A special cold storage (38° F) compartment with a capacity of 10 cu ft is an integral part of the
icemakerl ‘

Dry-storage cabinets are installed for items that can be stored at ambient temperature.
Storage compartments are provided for miscellaneous waste in compartments on both sides of the
galley in the bottom of the storage cabinets. These compartments have a fire rating of Class D.

A work counter including a wash basin is located on the left side of the aircraft at the aft end of the
galley. Through a window over the work counter the No. 1 engine and leading edge of the wing are
visible. »

The galley inteycom system connects to a station in each of the cabin-level service units.
This system permits unattended area-type communication in the galley area and provides handsets
at the cabin stations. Any station may signal and call any other station. A cabin interphone, one
of 10 stations, is located in the galley. The galley is provided with 500 CFM of fresh air and is a
separate temperature control zone.

The galley is lighted with flush ceiling lights utilizing cold-cathode lamps. These lights
are approximately 48 in. long and are spaced on 20 in. centers. Parking space is provided for the
food and beverage service carts beneath the equipment and storage cabinets on both sides of the
galley. The carts are parked and secured in a transverse position with respect to the aircraft and
are accessible to service while parked.

The L-1011 galley is serviced through a door located midway in the right side of the galley.
This door incorporates a window through which the No. 3 engine and leading edge of the wing can be
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seen. Food service carts are loaded singly into the galley from the commisgsary van through this
32-in.-wide door. The door opens inward and upward into the galley. The attendants will not oc~
cupy the galley during takeoff and landing. They will be provided with rough air seats outboard on
either side of the elevator enclosure and mounted on the aft galley bulkhead. In-flight access to
the electric load center will be provided through the aft galley bulkhead.

Two enclosed elevators are used to transport either personnel or food service carts be-
tween the underfloor galley and the cabin level. The elevators are powered indirectly by the four
aircraft hydraulic systems. Two systems are normally allocated to each elevator to provide power
source redundancy. Cross manifolding of the elevator hydraulic systems permits operation of
each elevator from any one of the four systems. The elevators can be controlled from both the
galley and cabin levels as well as from within the car. Safety features preclude operation when the
enclosure doors are open or when other potentially hazardous conditions exist. Emergency egress
hatches are provided in the top of the elevator cars. A ladder is provided in each car for access
to the hatch. Lights are provided within the elevator car as well as in the shaft. Food cart tiedown
fittings are provided within the car and on the car top. When the elevator cars are in the down posi-
tion, food service carts may be stored on top of the car and accessible to the cabin level. The ele-
vator will travel from the galley to cabin level in approximately 8 to 10 sec.

The midcabin service center is at the cross aisle immediately forward of the wing. This
unit encloses the elevator shaft on the cabin level. The unit is approximately 42 by 90 in. and is
situated transverse in the aircraft symetrically about the aircraft centerline. Four 32-oz coffee-
makers are installed in this unit, two on each side of the elevator enclosure. A small work counter
is provided under each coffeemaker installation and one wash basin. Storage space is provided
above each coffeemaker. Storage space during takeoff and landing for two food service carts is
provided, one on each outboard face of the service center. The entire service center is trimmed
to be compatible with the cabin decor.

A forward service center is installed immediately aft of the flight station with the operat-
Ing face forward. This unit contains a 32-0z coffeemaker and an extra hotplate. Space is provided
for a hot cup and a water station is installed in the right-hand outboard side of the unit. Miscella-
neous storage space is provided to support the beverage service. Space is provided to store one
beverage cart within the unit transverse with respect to the aircraft centerline. The top of the
unit opens upward to 90° exposing shelf space shielded from the passengers' view and providing a
partial storage space for two food carts within the unit and secured in a longitudinal position. The
single cart is stored for takeoff or landing. A galley intercom handset is installed in the service
center.

An aft coffee bar is installed forward of the aft service door on the right-hand side of the
aireraft. This unit is a configuration similar to the overhead coat-storage compartments and
lower storage unit. This unit incorporates one 32-oz coffeemaker and two extra hotplates. Space
is provided for a hot cup. Storage space is provided in both the overhead unit adjacent to the
coffeemaker and in the lower floor-mounted enclosure. A galley intercom handset is installed in
the coffee bar.
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A total of 18 food and beverage carts are provided with the galley system. This cart com-

plement includes 6 beverage carts, 8 coach-class carts, and 4 first-class service carts. These

carts are to be utilized for 56 first-class and 200 coach passengers. The carts are 16.5 in. wide,
36 in. long, and 36 in. high. The service carts carry insulated containers on top of the basic cart.
These containers are used to carry entrees, salads, or desserts. The cart incorporates 6 swivel-
ing casters, arranged in pairs at the sides of the cart, on each end and in the middle. The center
casters are lowered 1/8 in. to enhance cart maneuverability. The carts incorporate a retention
system that will engage a flat-headed bolt or mushroom mounted in the floor for unattended storage
positions. A jack-pad type of brake is provided for attended positioning and a tether system for
in-aisle service. This tether attaches to the passenger seat arms, which are stressed to accept
in-flight loads imposed by a tethered cart. The cart's structure and doors are symetrically ar-
ranged with respect to the ends of the cart.

The beverage cart supports the food service with soft drinks, liquor, wine, beer, ice,
garnishes, etc. This cart has the capacity to serve 50 passengers. The cart incorporates a pres-
surized cobra-head dispenser system that provides carbonated water, sweet water, drink mix, and
four cola syrups. A liquor module carries 105 liquor miniatures in dispenser tubes. This liquor
module is removable and lockable. Space is provided for glasses, 10 pounds of ice, drink gar-
nishes, quart bottles, beer, miscellaneous soft drinks, napkins, and a cash drawer. A stowable
top provides a sanitary dust cover when the cart is not in use.

The first-class food cart incorporated features necessary to accept a variety of modules
necessary to support cold food, entree, and dessert courses. When the cart is set up for cold
food, it contains the table supplies such as tablecloth, napkin, silverware, salt and pepper, wine
glasses, coffee cups, cold and dry food, bread, butter, china, and wines. The lower portion of
the cart is allocated to waste pickup from the beverage service. When this cart is arranged for
the entree course, it will contain the hot food, china, coffee cups, and wine and provide waste pick-
up space in the bottom portion of the cart. After completion of service, this cart will be used for
this course-waste pickup and receptacles and containers are provided for this purpose. After the
initial cold food service, this cold food cart will be returned to the galley and reconfigured to a
dessert cart. In this configuration, the cart will carry the desserts, coffee cups, extra silver-
ware, liquer glasses, liquers, wines, and miscellaneous afterdinner items. The lower portion of
the cart is available for waste.

The coach food cart contains both preset trays with cold and dry foods and the hot-entree
portion of the passengers' meals. The cart has a top-mounted container or holding oven that is
insulated and electricly heated when connected to the ship's power. This holding oven's insulation
helps maintain the temperature of the entree portions during the period of tranzit from the galley
to the passengers. This configuration of cart permits the cabin crew to serve the passenger his
complete meal in one operation, thereby reducing in-aisle traffic and delays in passenger service.
Each cart serves 27 coach-class passengers. This cart will be utilized to serve first-class
passengers on short flights with a cruise time of less than 1 hour.
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The L-1011 galley system has been developed to provide the air carrier with a more effi-
clent and cost-effective food system, maximum service flexibility, and the simplest interface with
ground equipment and the commissary. Efficiency is inherent with the utilization of the advanced
food preparation facilities and of food service carts to localize passenger food service and waste
pickup. Cost effectiveness is derived from the relocation of the galley from the high-priced seat-
ing area of the cabin to the relatively less expensive cargo area. Costs are also reduced by the
utilization of advanced cooking and cold storage equipment in the galley, permitting maintenance
of frozen enfree inventories, and cooking only actual food service requirements. Maximum ser-
vice flexibility is offered the carrier through the variety of entrees that may be offered to the pas-
genger and through the integrated use of the carts and cabin-level galley units. Finally, the features
of single-cart loading through a separate galley service door combined with latitudes in on-board
equipment operation simplify the ground equipment and facility requirements by reducing needs for
special handling equipment and storage facilities.

Galley system developments have resulted from analysis, design, and construction of
functional galley system elements and from actual food service testing. Efforts are continuing in
all areas to refine the system to the optimum point by the time the L-1011 enters service in 1971.
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CLOSING REMARKS WALTON L. JONES

NASA Office of Advanced Research
and Technology

The prime reason for this conference, as you have already been informed, was that NASA
believed that certain aspects of planning and applying food technology to long-term spaceflights re-
quired further research. We felt that the best way to review work done in this area was to invite
the persons working in the various disciplines to a common conference.

I should like to point out that the first A in NASA stands for aeronautics. I am responsible
for the aeronautics human factor studies. This is a new field for NASA, and, at the moment, we
cannot really contribute anything that would improve upon the fine work pioneered by the airline
industry. As a matter of fact, we are uncertain about the extent to which we should become involved;
however, we are willing to participate provided we can make a beneficial contribution. Mr. Webb,
when he was Administrator of NASA, urged us to act as catalysts in areas in which we saw that re-
search or technology was lacking and to try, through various means, to get the needs filled. The
question is, what can NASA do in support of research in this area ?

We hope that the answer lies in several programs now underway. For example, drawing
on our space technology knowledge we are developing an electrolysis process which supplies oxygen
to airplanes by electrolyzing water. Both military and civilian carriers would benefit, primarily
from a cutback in their logistics problems. For example, it now takes 5 liters of liquid oxygen to
provide 1 liter of coﬁverted gaseous oxygen per man. If our project is successful we shall be able
to produce from 1 pint of water sufficient oxygen for one man for a 10-hr mission.

Another project involves utilizing energy-absorption techniques to provide a more useful
airline seat. These techniques have been used in the military services for some time but have not
found their way into civilian use. We are also investigating the possibility of incorporating certain
convenience items into the seat. The seats may have an impact on future food-handling techniques.
We expect delivery of a prototype in midsummer. The Ames Research Center is monitoring both
of these projects.

I would like to call your attention to the fact that two different requirements have been dis-
cussed here. One of them is posed by previously designed systems. You heard some of the prob-
lems of trying to squeeze objects into predetermined spaces; that is the worry of the people en-
gaged in the human factors area and consequently the reason that they have been belaboring the
point. Any help that you can give them would certainly be appreciated. Dr. Humphrey, as you
know, heads the effort for the Apollo human factors program. His area is space medicine, and

he and I work very closely together.
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The other requirement is that posed by future systems not constrained by weights and
volumes. Hence, I urge all of you not to limit your thoughts to constraints of weights and volumes
for the future. I feel sure that for long-term spaceflights we are going to have to consider man as
a "subsystem'' whose requirements must be met. You have heard enumerated many requirements
for a man who is a consumer. Well, a man who is an astronaut will not be very different. He will
be doing work that we want him to perform, so we must keep him efficient, happy, and working for
us. This will not be an easy job on a long mission. There are going to be constraints on this man;
he will have limitations on his movement and his living conditions. We feel we should be consider-
ing the value of food and food management in maintaining his morale.

I believe that many good ideas have been discussed in this conference. We did not expect
to formalize any here this last afternoon. We will review the material presented and will expect to
hear from some of you. We want to put together a good Apollo Applications Program.

We have had many disciplines here; this is NASA's traditional approach to research. Mr.
Webb prided himself on heading one of the first Federal agencies to utilize this technique. I think
it has paid off, and we expect even greater dividends in the future.
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